

# Webinar 2

# Not too Loud, Not too Quiet (or getting the sound right)

Note: all information represents the views of VidCheck personnel: participants should satisfy themselves of the applicability to their particular circumstances

# Agenda [60 mins total]

Video Test with Intelligent Automated Correction

### Logistics

- Quick company & speaker background
- Not Too Loud, Not Too Quiet
  - □ audio loudness, peaks and measurement
  - □ structure & formats of file-based media
  - QC and types of errors
  - auto QC implementation considerations
  - □ the VidChecker solutions (incl. demo)

### ≻ Q & A

[5 mins + ....]

[55 mins]

[1 min]

[1 min]







### Prior to the Q & A section all participants' microphones are muted:

□ if you have a question prior to Q & A type a question

### Meeting is recorded

- □ to ensure we record who participates
- □ record questions & answers

### After the webinar

- brief feedback questionnaire (to e-mail address used to register): please fill this in and return it
- □ more information on VidChecker; or demo; or free trial version

## **Company Overview & Speakers**



Video Test with Intelligent Automated Correction

Founded mid-2009 following discussions and experience of broadcasters with 1<sup>st</sup> generation file-based QC systems

#### Management

- □ Thomas Dove: 25 years experience in compressed video/video test
  - Founded Vqual late 2002: sold to Tektronix late 2005
    - 'industry standard' video codec development tools (used by Microsoft, Sony, Philips, Samsung, Motorola, Harmonic..)
    - inspiration behind and responsible for Cerify
- Simon Begent: 20 years experience in compressed video/video test
  - previously marketing manager for Vqual products and Tektronix Cerify
- Other personnel previously with Vqual/Tektronix software engineers genuinely expert in file-based video test



# Not too Loud, Not too Quiet (getting the sound right)



# Audio Loudness, Peaks and Measurement

(a quick summary only)



### Perception of how loud audio is

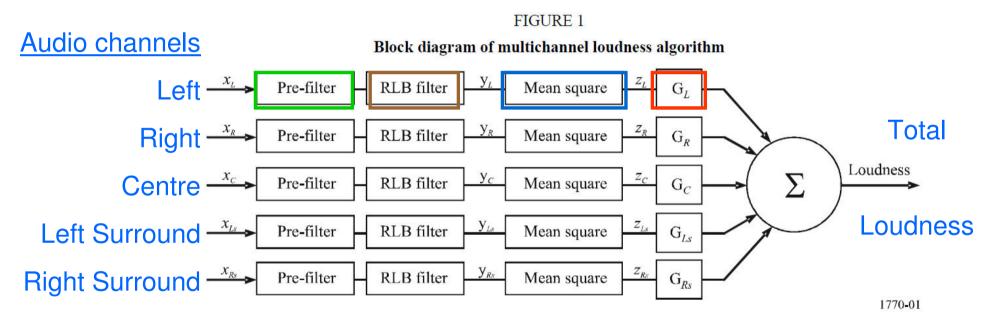
- □ subjective varies from person to person; and situation / context
  - e.g. commercial between programs is much louder although perhaps not 'loud'
- correlation between physical intensity of the audio signal and perception
- > Various methods of calculating this correlation
  - □ standard currently accepted is **ITU-R.BS 1770** 
    - includes algorithms to measure audio loudness and 'true peak' audio level

### Implementation recommendations

- North America: ATSC A/85 RP
- □ Europe: EBU R128
  - and Tech 3341 supplement

www.atsc.org

http://tech.ebu.ch/loudness


Take into account 'anchor' elements for setting loudness, e.g. dialog level

(1)

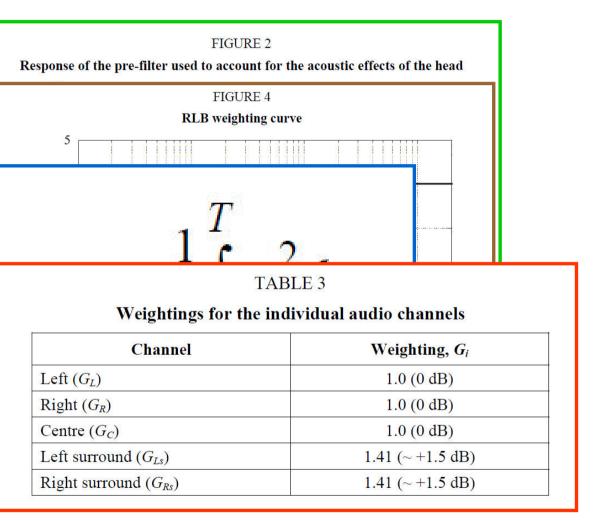


#### Video Test with Intelligent Automated Correction

- Specifies algorithms for measuring loudness & true-peak
- Loudness:



Note: LFE (Low Frequency Effects) channel is not included in Loudness measurement


## **BS 1770 Loudness**

(2)



Video Test with Intelligent Automated Correction

- Pre-filter:
- ➤ □ RLB filter:
- Pre-filter + RLB filter = 'K weighting'
- Mean square:



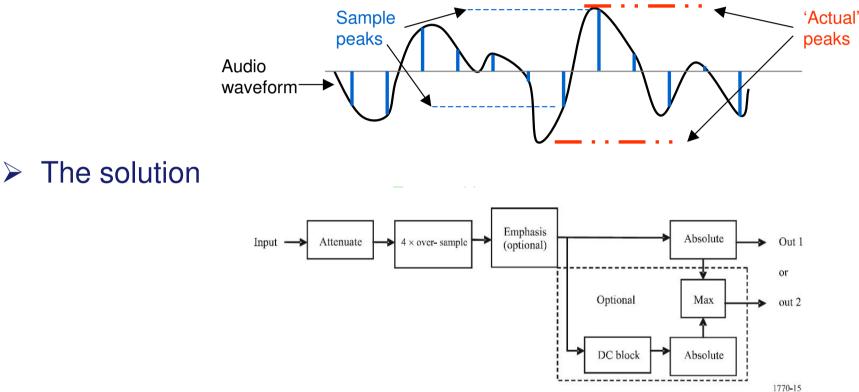
Note: only specified at 48kHz audio sampling rate





- 'LKFS' (North America) = Loudness, K weighted, relative to nominal Full Scale
- $\succ$  'LUFS' (Europe) = Loudness Units, relative to Full Scale

### LKFS = LUFS

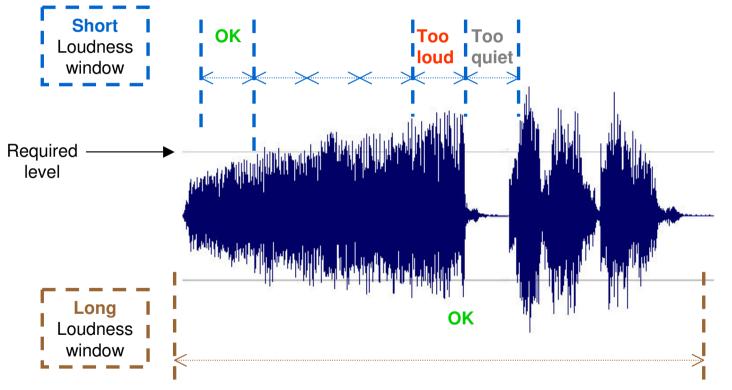

- $\Box$  0 = maximum; values are negative from this
- □ 1 LKFS / LUFS = 1dB
- Channel configuration
  - Stereo: measure both channels
  - **5**.1:
    - LEFTsurround & RIGHTsurround channel weightings +1.5dB each
    - LFE chanel excluded

## BS 1770 'True peak'



Video Test with Intelligent Automated Correction






#### 'True Peak'

- measured in dB relative to full scale: 0dB = maximum
- each channel measured individually







### Actually continuous 'rolling' windows are used

## ATSC A/85 RP and EBU R128

# VidCheck

Video Test with Intelligent Automated Correction

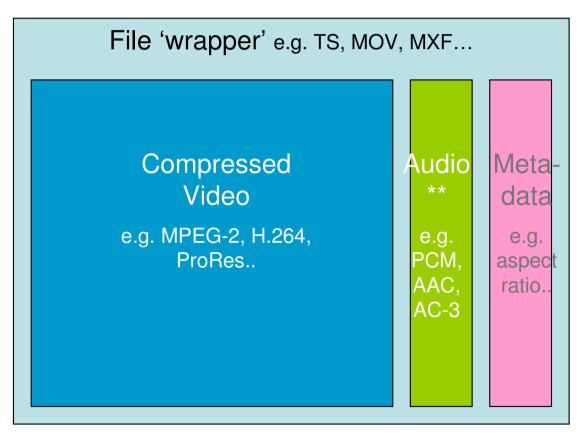
- > ATSC A/85 RP (North America)
  - □ Loudness: -24 LKFS +/- 2
  - □ True peak: -2dB maximum
  - Loudness windows:
    - **'short** content': measure whole of content (or can set window e.g. 10 secs)
    - 'long form content': measure a part 'typically' 30 mins
  - □ Gating: values below -32 LKFS are not counted

#### EBU R128 (North America)

- Loudness: -23 LUFS +/- 1
- □ True peak: -2dB maximum
- □ Loudness windows (EBU document Tech 3341):
  - Momentary 'M': 0.4 secs window, no gating
  - Short-term 'S': 3 secs window, no gating
  - Integrated 'l': whole program, values below –31 LUFS are not counted



# Structure & Formats of File-based Media


### Structure of file-based media



Video Test with Intelligent Automated Correction

Filename: movie\_hd.mxf

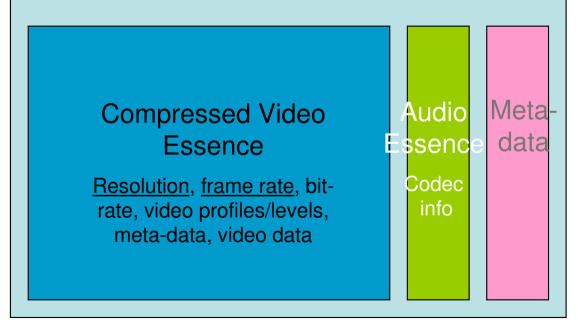
(1)



\*\* Audio data volume is much smaller: may or may not be compressed

### Structure of file-based media




Video Test with Intelligent Automated Correction

Filename: movie\_hd.mxf

(2)


#### File wrapper – overall file data

Video <u>resolution</u>, <u>frame rate</u>, bit-rate, video & audio codecs used, GOP structure, aspect ratio, other 'header' data, pointers to location of video & audio data, meta-data..



# Structure of file-based media (3)









### Common file wrappers

 MPEG-2 Transport Stream, MPEG-2 Program Stream, MXF Op1A, MOV (QuickTime), AVI, MP4..

### Common video codecs (formats)

MPEG-2 video, AVC/H.264/MPEG-4, IMX, DV25, XDCAM, ProRes, DNxHD/VC-3, VC-1, DVCPro, uncompressed YUV...

### Common audio codecs

MPEG-1 / MPEG-2 audio, PCM, AAC, AC-3 (Dolby Digital), Dolby Digital Plus, uncompressed WAV



# Audio QC and Types of Errors

## **Back in time**



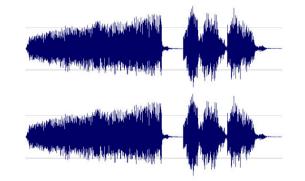
Video Test with Intelligent Automated Correction

### PPM meters / VU meters

• 'moving needle' [or electronic simulation of] with lag and integration






### File-based is.. just a file!

- □ copy, move, delete just like any other file
- only way to know what is inside is by reading the file
  - · read the wrapper and headers to read overall data
  - · decode the video
  - · decode the audio
  - read the meta data

# 11001.

### Live audio signal (transmission or from video tape deck)

□ Continuous, voltage etc.





### PPM meter

does not measure True Peak

### Proc amps

- no analog levels to 'tweak'
- Analog legalizers

## So how to test the audio in a file?

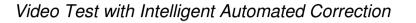
VidCheck

Video Test with Intelligent Automated Correction

- Can check some info by right-click or load into a media player and get info
  - □ channels, codec, bit-rate
- Manual play-out using a media player to listen
  - sound quality OK
  - audio is OK or even if any audio there at all
  - □ if mono instead of stereo or 5.1
- But play-out using a media player has problems
  - only real-time
  - needs a person to listen
  - □ player can hide details e.g. codec type
  - person can't necessarily hear all issues e.g. if sampling rate or bit-depth is incorrect

#### Specific QC software solution is needed



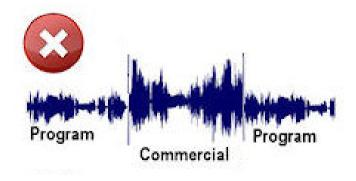

- Software that decodes the audio
- Implement BS 1770 Loudness measurement
  - □ ATSC A/85 RP
  - **BU R128 with Tech3341**
- Implement BS 1770 True Peak measurement
- Ideally also a digital 'PPM meter' to correlate with older measurements / methods
- ... and a way to correct for errors (there <u>will</u> be audio which is too loud / too quiet)



### Simple errors in post / rendering / file production

- □ incorrect audio codec
- □ incorrect sample rate
- □ incorrect layout e.g. incorrect timing of tone / silence
- missing audio or incorrect number of tracks
- audio on the wrong track
  - e.g. 5.1 on track 1, stereo on track 2 when it should be the other way round
- the audio track ends too soon or starts too late (audio is shorter than video)
- □ phase errors e.g. audio is mono (not so easy to detect by listening)

(2)




### 'Artistic' choice in post

- audio too loud or peak level too high \*\*
  - post-house: "let's make the audio really punchy!"

\*\* the most common error of all in commercials!

Already subject to legislation in many countries in Europe; soon to be in US also: CALM (Commercial Audio Loudness Mitigation) Act has passed both Houses, awaits Presidential signature



**VidCheck** 



### Some errors can't be corrected e.g.

- □ if no audio.. can't add it in
- □ if it should be 5.1 and is stereo only.. can't add it in
- Many errors need to be flagged but better <u>not</u> to try to correct, e.g. if audio is incorrect
  - □ sampling rate
  - bit-depth
  - incorrect codec
  - ⇒ could transcode but fundamental errors so probably want to reject file
    - perhaps re-edit or use post-production software to fix

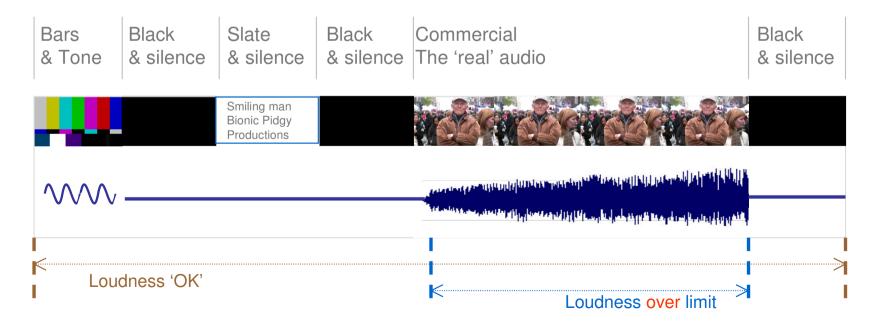


# Other Implementation Considerations

## Video/audio – but now an IT issue

VidCheck

Video Test with Intelligent Automated Correction


### Lots of file-based media to check?

- □ Time to process
- Processing multiple files concurrently
- Processing files with multiple audio
  - don't want to have to repeat for each audio track
- ⇒ *Can* throw processing power at the problem relatively cheap to do
- □ Time to move large files around internal network; space to store
- Video servers may not do network I/O quickly
  - □ configured for real-time SDI etc. I/O so network I/O is constrained
    - may need to upgrade video server network I/O capabilities

IT training / understanding for staff who are transitioning to file-based

### > Need to measure loudness only on program

- particularly important on commercials when using ATSC A/85 RP when 'whole duration' might be used
  - loudness over whole duration is within limits [and including 1kHz Tone]
  - <u>BUT</u> loudness of program itself is <u>not</u>



**VidCheck** 

# What if the audio levels are wrong?

Video Test with Intelligent Automated Correction

### ➤ E.g. if audio

- □ too Loud (or too quiet)
- or True Peak is too high (or too low)

} the most common errors
} of all in file-based media

**VidCheck** 

### The 'old way'

- QC software checks and flags errors to operators
- operators may then listen, scrub through file and form an opinion
- use software to decode the audio, correct the levels perhaps by hand using manual gain controls
- □ re-encode and re-multiplex
- check re-encoded file with QC software if incorrect go back to step 1

### > The new way – with *VidChecker*

□ QC software checks, corrects, writes corrected file & sends report



- > Auto QC is great for technical issues
  - e.g. checking sampling rates, codecs, audio loudness, true peak, audio phase, minimum levels, audio presence, types of audio on particular channels
  - accurately
  - thoroughly consistently
  - and more extensive as human QC is often beginning-middle-end only
- But auto QC software cannot e.g.
  - decide that the audio dialog is a bit quiet some of the time
  - the Surround channels should be a bit louder for better effect
  - these are post-production / editing decisions that must be taken by people



- > Auto QC can reduce need for human QC substantially
  - reduce man-hours required
  - leave humans to take decisions on more interesting issues where judgement is required
- Auto QC can sort the majority good from the minority bad
  - □ but will then likely need a person to look at the small amount that is bad
    - sign-off as OK
    - or reject, or edit
- If auto QC can sort enough of your file-based media so that fewer man-hours are needed

⇒ ROI can be very short for auto QC

(even if auto QC is only on a minority of your media – depends upon cost of QC software of course)



# VidChecker QC Solutions



- 2<sup>nd</sup> generation file-based video auto QC
  - builds on the experience of earlier products launched 3-5 years ago
  - □ flexible software-only solution (Win 7/Vista/XP/Server 2003/08 and virtualization)
- > 'Automated Intelligent Correction' of video & audio as well as checking
- Focuses on the checks 'that people get wrong'
  - not on the things that are almost invariably correct, such as syntax elements (a problem some years ago, but not now)
- Straightforward user interface, designed from the beginning to be easier to understand with user-intelligible error messages
- Takes advantage of modern multiple core CPUs & multiple PCs
  - □ can run on a single PC on multiple cores
  - and on multiple PCs in a *VidChecker Grid*
- Low cost from \$6K + \$1K Gold maintenance for processing 4 files at once
   e.g. i7 PC processes 3.5 hours of IMX30 SD per hour with almost all tests turned on

### VidChecker correction



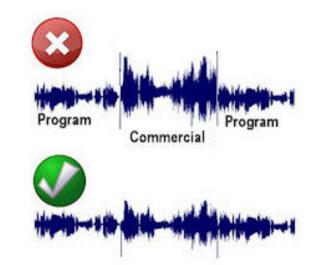

Video Test with Intelligent Automated Correction

### Video is checked and corrected

 Luma level incl. black levels; Chroma - color gamut errors; RGB - color problems using patent-pending algorithms to <u>intelligently</u> correct



Original - over limit highlights

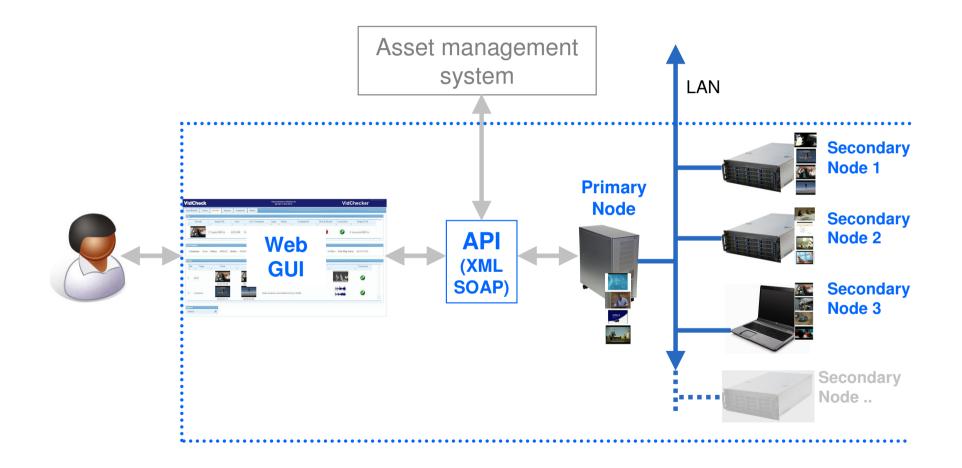



Typical "Legalizer" - color artefacts



VidChecker correction

- Audio is checked and <u>corrected</u>
  - peak, loudness to ATSC (ITU) and EBU recommendations




Commercial too **loud** 

VidChecker corrected audio









# VidChecker Demo



# Q & A





- Individual online demos of VidChecker
- Download a 15-day fully-functional trial
- Contact Sales
  - □ <u>sbegent@vidcheck.com</u>
  - □ tel.: 011 44 7502 470 565