
April 8, 2024 | 0804241319|

DIVA Installation and Configuration Guide

Application Programming
Guide

Version 9.2.0

D I V A

2

DIVA Application Programming Guide

Copyrights and Trademark Notices
Copyright © 2024 Telestream, LLC and its Affiliates. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, altered, or translated into any
languages without written permission of Telestream, LLC. Information and
specifications in this document are subject to change without notice and do not
represent a commitment on the part of Telestream. Specifications subject to change
without notice.

Telestream, CaptionMaker, Cerify, DIVA, Episode, Flip4Mac, FlipFactory, Flip Player,
GraphicsFactory, Kumulate, Lightspeed, MetaFlip, Post Producer, ScreenFlow, Switch,
Tempo, TrafficManager, Vantage, VOD Producer, and Wirecast are registered trademarks
and Aurora, ContentAgent, Cricket, e-Captioning, Inspector, iQ, iVMS, iVMS ASM,
MacCaption, Pipeline, Sentry, Surveyor, Vantage Cloud Port, CaptureVU, FlexVU, PRISM,
Sentry, Stay Genlock, Aurora, and Vidchecker are trademarks of Telestream, LLC and its
Affiliates. All other trademarks are the property of their respective owners.

Adobe. Adobe® HTTP Dynamic Streaming Copyright © 2014 Adobe Systems. All rights
reserved.

Apple. QuickTime, MacOS X, and Safari are trademarks of Apple, Inc. Bonjour, the
Bonjour logo, and the Bonjour symbol are trademarks of Apple, Inc.

Avid. Portions of this product Copyright 2012 Avid Technology, Inc.

CoreOS. Developers of ETCD.

Dolby. Dolby and the double-D symbol are registered trademarks of Dolby
Laboratories Licensing Corporation.

Fraunhofer IIS and Thomson Multimedia. MPEG Layer-3 audio coding technology
licensed from Fraunhofer IIS and Thomson Multimedia.

Google. VP6 and VP8 Copyright Google Inc. 2014 All rights reserved.

MainConcept. MainConcept is a registered trademark of MainConcept LLC and
MainConcept AG. Copyright 2004 MainConcept Multimedia Technologies.

Manzanita. Manzanita is a registered trademark of Manzanita Systems, Inc.

MCW. HEVC Decoding software licensed from MCW.

MediaInfo. Copyright © 2002-2013 MediaArea.net SARL. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

3

DIVA Application Programming Guide

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Microsoft. Microsoft, Windows Server 2016|Server 2019|Server 2022, Windows 10,
Media Player, Media Encoder, .Net, Internet Explorer, SQL Server 2012|2016|2019|2022,
and Windows Media Technologies are trademarks of Microsoft Corporation.

NLOG, MIT, Apache, Google. NLog open source code used in this product under MIT
License and Apache License is copyright © 2014-2016 by Google, Inc., © 2016 by Stabzs,
© 2015 by Hiro, Sjoerd Tieleman, © 2016 by Denis Pushkarev, © 2015 by Dash Industry
Forum. All rights reserved.

SharpSSH2. SharpSSH2 Copyright (c) 2008, Ryan Faircloth. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer:

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of Diversified Sales and Service, Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Swagger. Licensed from SmartBear.

Telerik. RadControls for ASP.NET AJAX copyright Telerik All rights reserved.

VoiceAge. This product is manufactured by Telestream under license from VoiceAge Corporation.

x264 LLC. The product is manufactured by Telestream under license from x264 LLC.

Xceed. The Software is Copyright ©1994-2012 Xceed Software Inc., all rights reserved.

4

DIVA Application Programming Guide

ZLIB. Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler.

Other brands, product names, and company names are trademarks of their respective
holders, and are used for identification purpose only.

MPEG Disclaimers

MPEGLA MPEG2 Patent
ANY USE OF THIS PRODUCT IN ANY MANNER OTHER THAN PERSONAL USE THAT
COMPLIES WITH THE MPEG-2 STANDARD FOR ENCODING VIDEO INFORMATION FOR
PACKAGED MEDIA IS EXPRESSLY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE
PATENTS IN THE MPEG-2 PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM
MPEG LA, LLC, 4600 S. Ulster Street, Suite 400, Denver, Colorado 80237 U.S.A.

MPEGLA MPEG4 VISUAL
THIS PRODUCT IS LICENSED UNDER THE MPEG-4 VISUAL PATENT PORTFOLIO LICENSE
FOR THE PERSONAL AND NON-COMMERCIAL USE OF A CONSUMER FOR (i) ENCODING
VIDEO IN COMPLIANCE WITH THE MPEG-4 VISUAL STANDARD (“MPEG-4 VIDEO”) AND/
OR (ii) DECODING MPEG-4 VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A
PERSONAL AND NON-COMMERCIAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO
PROVIDER LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.
ADDITIONAL INFORMATION INCLUDING THAT RELATING TO PROMOTIONAL, INTERNAL
AND COMMERCIAL USES AND LICENSING MAY BE OBTAINED FROM MPEG LA, LLC. SEE
HTTP://WWW.MPEGLA.COM.

MPEGLA AVC
THIS PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE
PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE
REMUNERATION TO (i) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD
(“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER
ENGAGED IN A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER
LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR
ANY OTHER USE. ADDITIONAL INFORMATION MAY BE OBTAINED FROM MPEG LA, L.L.C.
SEE HTTP://WWW.MPEGLA.COM.

5

DIVA Application Programming Guide

MPEG4 SYSTEMS
THIS PRODUCT IS LICENSED UNDER THE MPEG-4 SYSTEMS PATENT PORTFOLIO LICENSE
FOR ENCODING IN COMPLIANCE WITH THE MPEG-4 SYSTEMS STANDARD, EXCEPT THAT
AN ADDITIONAL LICENSE AND PAYMENT OF ROYALTIES ARE NECESSARY FOR
ENCODING IN CONNECTION WITH (i) DATA STORED OR REPLICATED IN PHYSICAL MEDIA
WHICH IS PAID FOR ON A TITLE BY TITLE BASIS AND/OR (ii) DATA WHICH IS PAID FOR ON
A TITLE BY TITLE BASIS AND IS TRANSMITTED TO AN END USER FOR PERMANENT
STORAGE AND/OR USE. SUCH ADDITIONAL LICENSE MAY BE OBTAINED FROM MPEG LA,
LLC. SEE HTTP://WWW.MPEGLA.COM FOR ADDITIONAL DETAILS.

Limited Warranty and Disclaimers
Telestream, LLC (the Company) warrants to the original registered end user that the
product will perform as stated below for a period of one (1) year from the date of
shipment from factory:

Hardware and Media—The Product hardware components, if any, including equipment
supplied but not manufactured by the Company but NOT including any third party
equipment that has been substituted by the Distributor for such equipment (the
“Hardware”), will be free from defects in materials and workmanship under normal
operating conditions and use.

Warranty Remedies
Your sole remedies under this limited warranty are as follows:

Hardware and Media—The Company will either repair or replace (at its option) any
defective Hardware component or part, or Software Media, with new or like new
Hardware components or Software Media. Components may not be necessarily the
same, but will be of equivalent operation and quality.

Software Updates
Except as may be provided in a separate agreement between Telestream and You, if
any, Telestream is under no obligation to maintain or support the Software and
Telestream has no obligation to furnish you with any further assistance, technical
support, documentation, software, update, upgrades, or information of any nature or
kind.

Restrictions and Conditions of Limited Warranty
This Limited Warranty will be void and of no force and effect if (i) Product Hardware or
Software Media, or any part thereof, is damaged due to abuse, misuse, alteration,
neglect, or shipping, or as a result of service or modification by a party other than the
Company, or (ii) Software is modified without the written consent of the Company.

6

DIVA Application Programming Guide

Limitations of Warranties
THE EXPRESS WARRANTIES SET FORTH IN THIS AGREEMENT ARE IN LIEU OF ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No oral
or written information or advice given by the Company, its distributors, dealers or
agents, shall increase the scope of this Limited Warranty or create any new warranties.

Geographical Limitation of Warranty—This limited warranty is valid only within the
country in which the Product is purchased/licensed.

Limitations on Remedies—YOUR EXCLUSIVE REMEDIES, AND THE ENTIRE LIABILITY OF
TELESTREAM, LLC WITH RESPECT TO THE PRODUCT, SHALL BE AS STATED IN THIS
LIMITED WARRANTY. Your sole and exclusive remedy for any and all breaches of any
Limited Warranty by the Company shall be the recovery of reasonable damages which,
in the aggregate, shall not exceed the total amount of the combined license fee and
purchase price paid by you for the Product.

Damages
TELESTREAM, LLC SHALL NOT BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF YOUR USE OR INABILITY TO USE THE PRODUCT, OR THE BREACH OF
ANY EXPRESS OR IMPLIED WARRANTY, EVEN IF THE COMPANY HAS BEEN ADVISED OF
THE POSSIBILITY OF THOSE DAMAGES, OR ANY REMEDY PROVIDED FAILS OF ITS
ESSENTIAL PURPOSE.

Further information regarding this limited warranty may be obtained by writing:
Telestream, LLC
848 Gold Flat Road
Nevada City, CA 95959 USA

You can call Telestream during U. S. business hours via telephone at (530) 470-1300.

Regulatory Compliance
Electromagnetic Emissions: FCC Class A, EN 55022 Class A, EN 61000-3-2/-3-3, CISPR 22
Class A

Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN
61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE
Marking (Europe)

California Best Management Practices Regulations for Perchlorate Materials:
This Perchlorate warning applies only to products containing CR (Manganese Dioxide)
Lithium coin cells. Perchlorate Material-special handling may apply. See
www.dtsc.ca.gov/hazardouswaste/perchlorate.

7

DIVA Application Programming Guide

Obtaining Support | Information | Assistance
Contact Telestream for support, information or assistance, as indicated.

DIVA Library
For more information about DIVA, browse the DIVA library at telestream.net/
telestream-support/DIVA/support.htm.

Resource Contact Information

DIVA Technical Support |
Information | Assistance |
FAQ | Forums | Upgrades

Web site: telestream.net/telestream-support/DIVA/
support.htm

Web site: telestream.net/telestream-support/DIVA/
support.htm

Support Email. support@telestream.net

US Phone: 877-257-6245

International Phone: +1 530-470-2036

Support hours: Monday - Friday, 7am - 6pm Pacific time.

P1 Support: 24 x 7.

Terms and times of support services vary, per the terms of
your current service contract with Telestream.

Depending on problem severity, Telestream responds
within 24 business hours. For P1 issues, Telestream
responds within 1 hour. Please see the Maintenance &
Support Guide for definitions.

Product Licensing Web site: telestream.net/telestream-support/DIVA/
support.htm

License Email: license@telestream.net

Telestream, generally Web site: telestream.net

Sales and Marketing Email: info@telestream.net

Telestream Reseller
Support

If you purchased your product from a reseller, please
contact your reseller for support.

International Reseller
Support

Website: telestream.net

See the website for your regional authorized Telestream
reseller.

Telestream Technical
Writers

Email: techwriter@telestream.net

If you have comments or suggestions about improving
this document or other Telestream documents—or if
you've discovered an error or omission, please email us.

https://www.telestream.net/telestream-support/DIVA/support.htm
https://www.telestream.net/telestream-support/DIVA/support.htm
https://www.telestream.net/telestream-support/DIVA/support.htm
https://www.telestream.net/telestream-support/DIVA/support.htm
mailto:support@telestream.net
https://www.telestream.net/telestream-support/DIVA/support.htm
https://www.telestream.net/telestream-support/DIVA/support.htm
mailto:license@telestream.net
http://www.telestream.net
mailto:info@telestream.net
http://www.telestream.net
mailto:techwriter@telestream.net
https://www.telestream.net/telestream-support/content-conductor/support.htm
https://www.telestream.net/telestream-support/content-conductor/support.htm

8

DIVA Application Programming Guide

Contents

Introduction 11
DIVA Concepts 11

Archive Request 11
Restore Request 12
Partial Restore 13
Delete Request 13

Operational Boundaries 13
Number of DIVA Connections 13
Number of Simultaneous DIVA Jobs 13
Number of API Tasks 13
Special Authorized Characters 14
Maximum Number of Allowed Characters 15
File Path Limitations 16

REST API Configuration 17
Main DIVA API Calls 17
Getting Started 18

Structure 18
Initial Configuration 18
Sample Python Program 23

Data Service API 24
Overview 24
Data Service API 25
DIVA Manager Endpoints 26
DIVA Connect REST API 26

Workflows 27
Authentication Token Workflow 27
Roles 28
DIVA API Workflows 29
DIVA Request Status Codes 30
Partial Restore Request Formats and Manager Responses 32

Contents 9

DIVA Application Programming Guide

Python DIVAScript Configuration 36
About Python DIVAScript 36

DIVAScript Commands Supported by REST API 36
DIVAScript Configuration File Settings 37

Running DIVAScript in Server Mode 37
DIVAScript in Command-Line Mode 37

DivaScript command syntax 38

Accessing Java API Documentation 42
Accessing Java API Documentation Before Installation 42
Accessing Java API Documentation After Installation 43
Known Issues 43

C++ API Programming Guide 44
C++ API Overview 44

DIVA Release Compatibility 45
Managing Connections 45
Compilers 48
Using the API in Multithreaded Applications 50
Using Unicode Strings in the API 50

Session Management Commands 50
DIVA_getApiVersion 51
DIVA_SSL_initialize 51
DIVA_connect 51
DIVA_disconnect 53

Jobs and Commands 54
DIVA_addGroup 54
DIVA_archiveObject 55
DIVA_associativeCopy 59
DIVA_cancelRequest 61
DIVA_changeRequestPriority 62
DIVA_copyToGroup and DIVA_copy 64
DIVA_copyToNewObject 67
DIVA_deleteGroup 71
DIVA_deleteInstance 72
DIVA_deleteObject 75
DIVA_ejectTape 77
DIVA_enable_Automatic_Repack 78
DIVA_getArchiveSystemInfo 79
DIVA_getArrayList 84
DIVA_getFinishedRequestList 87
DIVA_getFilesAndFolders 89
DIVA_getGroupsList 93
DIVA_getObjectDetailsList 94
DIVA_getObjectInfo 108

Contents 10

DIVA Application Programming Guide

DIVA_getPartialRestoreRequestInfo 109
DIVA_getRequestInfo 110
DIVA_getSourceDestinationList 116
DIVA_getStoragePlanList 118
DIVA_getTapeInfo 119
DIVA_insertTape 120
DIVA_linkObjects 122
DIVA_lockObject 123
DIVA_multipleRestoreObject 124
DIVA_partialRestoreObject 128
DIVA_release 140
DIVA_require 141
DIVA_restoreInstance 143
DIVA_restoreObject 146
DIVA_transcodeArchive 150
DIVA_transferFiles 153
DIVA_unlockObject 155

11

Introduction

This document is intended for software developers to create applications using DIVA
functionalities.

Topics
■ DIVA Concepts

■ Operational Boundaries

DIVA Concepts
The core concept of DIVA is data preservation. Core DIVA functionalities are Archive,
Restore and Delete. DIVA has many more features, but these kinds of requests are part
of the basics of DIVA.

The following are standard DIVA concepts.

Note: To enable API backward compatibility, the term job has been removed and
replaced with request used in legacy API structures and commands.

Note: Telestream recommends using the REST API rather than the previous existing
APIs (that is, DIVA Enterprise Connect, DIVAS, Java and C++). Although all previous
APIs will remain available, the REST API offers new and enhanced features and is
integrated into DIVA and is required by the web app to function.

Archive Request
DIVA stores objects. An object is a set of files referring to an asset or a clip. An object can
be made of one file, typically an MXF file, or with several files like reference MOV format
(one video file, several audio files), or DPX format.

Introduction
DIVA Concepts

12

DIVA Application Programming Guide

An object is identified by a Name and a Collection (category). Choose whatever names
for Object Name and Collection desired. DIVA checks only that the Object Name +
Collection combination is unique.

In DIVA, a Collection is like a name extension and should not be confused with a Tape
Group. Any name can be used for the Collection. Telestream recommends using the
application or company name so we can identify who has sent a request. Should the
same Object Name be used for different clips (typically hi-res and low-res), use a
different Collection to distinguish those clips.

The Files parameter provides the names of the files of the object to be archived; each
name can contain a relative path to the file location.

Media Name is the DIVA device used for storing the object; it can be a disk, a tape or
cloud storage. Each of these devices can have multiple names based on partitioning
(for example, DIVAGRID, NAS-STORAGE, TAPE_SPORTS_MAIN, TAPE_SPORTS_BKP,
CLOUD_PROGRAM, CLOUD_PROMOS, and so on). The list of all Arrays and Tape Groups
can be retrieved from DIVA, but it does not necessarily mean they need to be exposed
to the end user. The Media can also be a Storage Plan (see the Storage Policy Manager
book for details). Check with the customer and the DIVA Project Manager about which
Media to expose to the end user.

The Unmanaged Storage Repository Name is the content server name where DIVA will
archive from. It must be the same name as in the DIVA configuration. Confirm this with
the customer or DIVA Project Manager for this list.

The Source Path Root is the File Path Root where the content objects are located. By
default, DIVA will use the default File Path Root configured for that source in the DIVA
configuration.

Note: The Source list can be obtained using the GET /servers API call.

The Quality of Service parameter can remain at the default setting.

The Priority (between 1 and 100 highest) can either remain at the default, or a value can
be specified.

If the Delete From Source option check box is selected, then that parameter will delete
the asset just archived from the Source Server, but only if the archive was successful.

Restore Request
The following items must be specified for a Restore Request:

• Object Name

• Object Collection

• Unmanaged Storage Repository Server Name

• The File Path Root; if empty, DIVA will take the File Path Root used during the
Archive request and will overwrite the object if it already exists, unless the Do Not
Overwrite option is specified.

Introduction
Operational Boundaries

13

DIVA Application Programming Guide

Partial Restore
The Partial Restore parameters are the same as the Restore parameters with the
following additional options:

• Offset or Timecodes (In/Out) or File List

• Partial Restore will create a new clip name because it generates a new clip created
with a portion of the original clip.

Delete Request
A Delete Object Request will delete all copies of that object whether they are on disk,
tape (in the tape library or external), or in the cloud. The Object Name and Object
Collection must be specified.

Note: Deleting an object implies it cannot be recovered from the storage media after
deletion.

Operational Boundaries

Number of DIVA Connections
The number of connections to DIVA is limited by DIVA and set in the TSCM
configuration file. The default configuration limit is 200. This includes connections to
GUIs, Actors and all API clients. When the configured limit is reached, the API will not
create additional connections.

See the diva.conf and manager.conf configuration files for more information.

Number of Simultaneous DIVA Jobs
The maximum number of simultaneous jobs processed by DIVA is configurable in the
diva.conf file as the value of the DIVA_MAX_SIMULTANEOUS_REQUESTS parameter. The
default value has been raised from two hundred to five hundred. The maximum
number has been verified up to two thousand. Additional simultaneous jobs beyond
the value set in this parameter are rejected by DIVA.

Number of API Tasks
The number of API tasks that will be accepted to the API Processing Queue is
configurable in the diva.conf file as the value of the DIVA_API_TASK_QUEUE_SIZE
parameter. The default value is two thousand and DIVA has been verified at this value. If
the queue is full, subsequent commands are rejected.

Introduction
Operational Boundaries

14

DIVA Application Programming Guide

Special Authorized Characters
Many jobs require alpha numeric text parameters. Special characters can be used in
these fields as defined in the following table. The job is rejected if an invalid special
character is used. In a Windows environment, file and folder names cannot consist of
one or more spaces, and cannot contain a double-quotation mark.

Field (across)
Character (down)

Name Collection Source Media Path File Comments Options

~ Yes Yes Yes Yes Yes Yes Yes Yes

' Yes Yes Yes Yes Yes Yes Yes Yes

! Yes Yes Yes Yes Yes Yes Yes Yes

@ Yes Yes Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes Yes Yes

$ Yes Yes Yes Yes Yes Yes Yes Yes

% Yes Yes Yes Yes Yes Yes Yes Yes

^ Yes Yes Yes Yes Yes Yes Yes Yes

& Yes Yes Yes Yes Yes Yes Yes No

* Yes Yes Yes Yes No Yes Yes Yes

(Yes Yes Yes Yes Yes Yes Yes Yes

) Yes Yes Yes Yes Yes Yes Yes Yes

_ Yes Yes Yes Yes Yes Yes Yes Yes

- Yes Yes Yes Yes Yes Yes Yes Yes

+ Yes Yes Yes Yes Yes Yes Yes Yes

= Yes Yes Yes Yes Yes Yes Yes Yes

| Yes Yes Yes Yes No Yes Yes Yes

\ Yes Yes Yes Yes No Yes Yes Yes

} Yes Yes Yes Yes Yes Yes Yes Yes

] Yes Yes Yes Yes Yes Yes Yes Yes

{ Yes Yes Yes Yes Yes Yes Yes Yes

[Yes Yes Yes Yes Yes Yes Yes Yes

: Yes Yes Yes Yes No Yes Yes Yes

; Yes Yes Yes Yes Yes1 Yes Yes Yes

Introduction
Operational Boundaries

15

DIVA Application Programming Guide

Maximum Number of Allowed Characters
The maximum number of characters that can be used for job parameters is displayed in
the following list. If these limits are exceeded, the job is rejected.

• Name

Maximum of 192 characters.

• Collection

Maximum of 96 characters.

• Source

Maximum of 96 characters.

• Media

Maximum of 96 characters.

• Path and File Name

Maximum of 1536 characters.

• Comments

Maximum of 4000 characters.

• Options

Maximum of 768 characters.

“ Yes Yes Yes Yes No Yes Yes No

' Yes Yes No No Yes1 Yes Yes Yes

< Yes Yes Yes Yes No Yes Yes No

, Yes Yes Yes Yes Yes1 Yes Yes Yes

> Yes Yes Yes Yes No Yes Yes Yes

. Yes Yes Yes Yes No Yes Yes Yes

? Yes Yes Yes Yes No Yes Yes Yes

/ Yes Yes Yes Yes No Yes Yes Yes

Space Yes Yes Yes Yes No Yes Yes Yes

1. Depends on file system restrictions.

Field (across)
Character (down)

Name Collection Source Media Path File Comments Options

Introduction
Operational Boundaries

16

DIVA Application Programming Guide

File Path Limitations
DIVA supports absolute path names on both Windows and Linux up to a maximum of
4000 characters. Relative path names are limited to 32676 characters on Windows
systems (only).

A DIVA Windows local path is structured in the following order and terminated with a
NUL character:
Drive_Letter:\Component_Name\Component_Name\File_Name.Extension

Here are example paths used in DIVA in Windows. The <NUL> character used in the
example represents the invisible terminating null character for the current system code
page and need not be entered. (The < and > characters are used to identify the NUL
character by name, and must not be part of a path string.

Generic Path:
D:\Some_32676-Character_Path_String<NUL>

Actor Executable:
D:\diva\diva\Program\Actor\bin\diva.exe

DIVA Configuration:
D:\diva\10\Program\conf\diva\diva.conf

17

REST API Configuration

This chapter describes REST API configuration.

Topics
■ Main DIVA API Calls

■ Getting Started

■ Data Service API

■ Workflows

Main DIVA API Calls
The following are the main DIVA API calls available and are the minimum required to
implement the basic DIVA API workflows:

• POST /users/logins

• POST /users/logout

• GET /groups

• GET /arrays

• GET /object/info

• GET /objects/list

• GET /requests

• POST /requests/archive

• POST /requests/cancel

• POST /requests/delete

• POST /requests/partialRestore

• POST /requests/restore

• GET /requests/{requestId}

• GET /versions

REST API Configuration
Getting Started

18

 DIVA Application Programming Guide

The Swagger definitions for these endpoints are located here:

https://127.0.0.1:8765/webjars/swagger-ui/index.html?urls.primaryName=data

https://127.0.0.1:8765/webjars/swagger-ui/index.html?urls.primaryName=manager

REST API JSON files can be downloaded from Share Point here:

https://tinyurl.com/JSON-Files

or from the Telestream DIVA Support Portal:
https://www.telestream.net/telestream-support/content-conductor/support.htm.

Getting Started
This chapter guides the user through getting started using the DIVA REST API.

Structure
The REST API Swagger page is home to all DIVA REST APIs. You can toggle to other APIs
using the Definition at the top right side of the page.

For the purposes of this document we will focus of the data and manager service
required to login and submit requests, respectively.

Initial Configuration
During installation a user is created by either the DIVA Installer, or manually by an
administrator. This information must be obtained from the person who created the
user; all automations and API calls use these credentials. Go to the POST users/login

https://www.telestream.net/telestream-support/content-conductor/support.htm

REST API Configuration
Getting Started

19

 DIVA Application Programming Guide

endpoint and specify the login and password to log in; this is sufficient to obtain a
token and proceed with other API calls.

Click the Try it out button and you will receive a token. Copy the contents of the Bearer
token (everything in quotes after “token”) as shown in the following figure:

A POST /users request must be submitted by entering the token in the Authorization
field to create a user. The user name, password, and role of the user to create must be
specified (see the following figure). Optionally, you may specify an email address and a
session timeout in minutes when creating a user. The session timeout is how long the
user will remain logged into DIVA. You can configure it to a value between 0 and 10080
minutes. Default: 1440 minutes.

Note: Call GET /roles to obtain a list of possible roles.

• All DIVA GET requests require at least the user role.

• Archive, Restore (including N-Restore and Partial Restore) and Copy requests
require at least the operator role.

REST API Configuration
Getting Started

20

 DIVA Application Programming Guide

• Change Priority, Transfer, Eject, Insert, Export and Import requests require at least
the advoperator role.

• All other requests require the administrator role.

Here is an example:

The API is now ready to be used to retrieve information from DIVA. Switch to the
Manager endpoints to start using the API.

REST API Configuration
Getting Started

21

 DIVA Application Programming Guide

Retrieving All Configured Actors

This figure is an example call to retrieve all configured Actors:

This figure shows the start of the response:

Submitting a Request
To submit a request (for example, an Archive request) submit a POST /requests/archive.
The header must contain an Authorization Key with the bearer token as the value, as
depicted in this request:
curl -X POST --header 'Content-Type: application/json' --header
'Accept: application/json' --header 'Authorization: Bearer
eyJhbGciOiJIUzUxMiJ9.eyJhdWQiOiI1MjM5YTcxOS1iYjAwLTQ5MWQtOGYxZi01Z
jcxM2YxZWZiMjMiLCJleHAiOjE2MjEzNTY0MDcsImlhdCI6MTYyMTI3MDAwNywiYXV
0aG9yaXRpZXMiOlsic3lzYWRtaW4iXSwidXNlcm5hbWUiOiJzeXNhZG1pbiJ9.zZiK
vEe-3JjuOsJ-CDpW_32JKRefy54-wGwra_LABmUeuIhpWGEpHnT-
Se5PXTFxvjDf2g9mgezKQIvIJzObzQ' -d '{ \
 “collectionName”: “a”, \
 “comments”: “this is object a2”, \

REST API Configuration
Getting Started

22

 DIVA Application Programming Guide

 “components”: [\
 “1.txt” \
], \
 “filePathRoot”: “”, \
 “media”: “default”, \
 “objectName”: “a2”, \
 “options”: “”, \
 “priority”: 50, \
 “qos”: 2, \
 “sourceServer”: “wfm_ftp_sd_for_diva_test” \
 }' 'http://172.16.10.18:8765/manager/requests/archive'

Go to the Swagger page for the request and click on the Example Value to view the
fields that must be specified for any request.

Specify the values and click Execute to submit the request.

REST API Configuration
Getting Started

23

 DIVA Application Programming Guide

Note: Click Model (next to the Example Value tab) to view a description of each field
and a list possible values.

For example, for qos, the list of possible QOS values and their meaning are displayed. A
value of 2 signifies a QOS value of Direct-only.

Sample Python Program
Here is a sample program to obtain all Actors from DIVA using Python:
import requests

url = https://127.0.0.1:8765/dataservice/users/login

headers = {
 “Content-Type”: “application/json; utf-8”,
 “Accept”: “application/json”
}

REST API Configuration
Data Service API

24

 DIVA Application Programming Guide

json = {
 “username”: “enter_the_username_here”,
 “password”: “enter_the_password_here”
}

response = requests.post(url, headers=headers, json=json,
verify=False)

token = response.json()[“token”]

print(token)

url = https://127.0.0.1:8765/manager/actors?page=1&size=5

headers = {
 “Accept”: “application/json”,
 “Authorization”: token
}

response = requests.get(url, headers=headers, verify=False)

print(response.json())

Data Service API

Overview
The REST API documentation is included in DIVA as HTTP documentation; which is
accessible directly from within the REST API.The Swagger documentation for the REST
API services is accessible using the following URL by replacing localhost with the
correct IP address:

http://localhost:8765/webjars/swagger-ui/index.html

Important: Be sure to check the details in the Swagger API comments.

The Data Service endpoints can be switched to other endpoints using the menu at the
top of the page:

REST API Configuration
Data Service API

25

 DIVA Application Programming Guide

Data Service API
This is the API used to communicate with the database. Only user, profile, and
endpoints are exposed. The Data Service is used to manage users, roles and profiles.
After a user is created through POST /users, that user can obtain an access token
through POST /users/login that will be needed for all future communication; including
accessing all DIVA resources available in the Manager Endpoints.

REST API Configuration
Data Service API

26

 DIVA Application Programming Guide

DIVA Manager Endpoints
You use the API to communicate with DIVA. Use these endpoints to submit requests
and obtain information on DIVA resources and requests.

DIVA Connect REST API
The REST API can be used to send requests and commands to DIVA Connect. The same
port used for the Client Web Connections is used for this API. The REST API supports
only MultiDIVA Mode.

REST API Configuration
Workflows

27

 DIVA Application Programming Guide

See the DIVA Connect documentation on the DIVA Support Portal at https://
www.telestream.net/telestream-support/content-conductor/support.htm for detailed
information.

Swagger contains DIVA Connect REST API endpoints as shown here:

Workflows
This chapter describes the DIVA API and Authentication Token Workflows. The REST API
uses JWT (JSON Web Token) authentication specified in the authorization header of all
requests. To obtain the token, POST to /users/login on the data service; passing in the
user name and password. There is a specific endpoint to get a authentication token and
all the functions of the REST API require this token to function properly.

Authentication Token Workflow
The authentication phase is mandatory in order to get a token that will be used for any
following API call. A token is configurable and valid for 1440 minutes (24 hours) by
default. The maximum is 10080 minutes (7 days). It is advised to authenticate one time
at the start of your application before the 1st call to a DIVA API call, and then use that
token as long as it is valid. Any HTTP request using an invalid or expired token will fail
with HTTP error code 403 (access denied).

The following process is the authentication workflow.

1. Upon login the user will receive an authentication token.

2. An access token must be used to access secured endpoints. It will automatically
expire after one day. Alternatively, a user may delete an access token by calling
/users/logout.

https://www.telestream.net/telestream-support/content-conductor/support.htm
https://www.telestream.net/telestream-support/content-conductor/support.htm

REST API Configuration
Workflows

28

 DIVA Application Programming Guide

3. When an access token expires or is deleted, the client is considered as logged out
and must login again.

Roles
A user may belong to one of five roles; sysadmin, admin, advoperator, operator, or user.

A user may perform all basic GET operations including the following:

• POST /users/login

• POST /users/logout

• PUT /users/{userName}/password

• GET /profile

• PUT /profile

• GET /users

• GET /roles

• GET ANY RESOURCE (for example, GET /actors)

An Operator may perform all the operations of a user and the following additional
operations:

• POST /requests/archive

• POST /requests/restore

• POST /requests/copy

An Advanced Operator (advoperator) may perform all the operations of an operator
and the following additional operations:

• PUT /requests

• POST /requests/transferFiles

• POST /requests/insertTape

• POST /requests/ejectTape

• POST /requests/repackTape

• POST /requests/exportTape

• POST /requests/importTape

An Administrator (admin) may perform all operations of an advoperator and the
following additional operations:

• POST /requests/delete

• POST /requests/serverDelete

A System Administrator (sysadmin) may perform all operations of an administrator and
the following additional operations:

• POST /users

• DELETE /users

REST API Configuration
Workflows

29

 DIVA Application Programming Guide

• GET /users

• GET /roles

DIVA API Workflows
The following guidelines should be used to develop workflows using the DIVA API:

• First authentication: if possible use only one authentication to DIVA at the start of
the application and use the token returned for further API calls. Do not authenti-
cate multiple times, and in particular not before each DIVA request.

• Send the DIVA request (archive, restore, and so on) using the token from the last
step and get the Request ID. Add the Request ID to the DIVA request queue.

• Pool every n seconds on the DIVA request queue list using getRequestInfo. Wait
a minimum of 10 seconds between each pooling phase.

• The progress and phase can be obtained for each running request.

• Any running request can be canceled.

• A finished request can be removed from the DIVA request queue. A finished request
will be COMPLETED, PARTIALLY_COMPLETED, ABORTED, or CANCELLED.

• Avoid retrying too many times if a request fails.

• Before restoring an object, use divaGetObjectInfo to know if the object is
online; there is no need to try to restore an offline object because it will fail.

• Try to develop a sync (or resync) mechanism to sync the application with DIVA
objects using the Since Date option to discover new and deleted objects.

After authenticated, three different threads could be created to manage the DIVA
workflows as shown in the following figure:

REST API Configuration
Workflows

30

 DIVA Application Programming Guide

DIVA Request Status Codes
This table identifies DIVA request status codes:

Code Name Description

1000 DIVA_OK Success

1001 DIVA_ERR_UNKNOWN Error: unknown error

1002 DIVA_ERR_INTERNAL Error: internal error

1003 DIVA_ERR_NO_ARCHIVE_SYSTEM Error: no archive system

1004 DIVA_ERR_BROKEN_CONNECTION Error: broken connection

1005 DIVA_ERR_DISCONNECTING Error: while disconnecting

1006 DIVA_ERR_ALREADY_CONNECTED Error: already connected

1007 DIVA_ERR_WRONG_VERSION Error: wrong software version

1008 DIVA_ERR_INVALID_PARAMETER Error: invalid parameter

1009 DIVA_ERR_OBJECT_DOESNT_EXIST Error: Object doesn't exist

1010 DIVA_ERR_SEVERAL_OBJECTS Error: several objects with this
name

1011 DIVA_ERR_NO_SUCH_REQUEST Error: no such request

1012 DIVA_ERR_NOT_CANCELABLE Error: request is not cancelable

1013 DIVA_ERR_SYSTEM_IDLE Error: DIVA is idle

1014 DIVA_ERR_WRONG_LIST_SIZE Error: wrong objects list size

1015 DIVA_ERR_LIST_NOT_INITIALIZED Error: Objects list is not initialized

1016 DIVA_ERR_OBJECT_ALREADY_EXISTS Error: Object already exists

1017 DIVA_ERR_GROUP_DOESNT_EXIST Error: Tape Group, media or
storage plan does not exist

1018 DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST Error: source or destination
doesn't exist

1019 DIVA_WARN_NO_MORE_OBJECTS Warning: no more objects

1020 DIVA_ERR_NOT_CONNECTED Error: not connected

1021 DIVA_ERR_GROUP_ALREADY_EXISTS Error: Tape Group, media or
storage plan already exists

1022 DIVA_ERR_GROUP_IN_USE Error: archived objects belong to
this Tape Group

REST API Configuration
Workflows

31

 DIVA Application Programming Guide

This table identifies possible status codes for unsuccessful Archive requests:

1023 DIVA_ERR_OBJECT_OFFLINE Error: Object offline

1024 DIVA_ERR_TIMEOUT Error: timeout

1025 DIVA_ERR_LAST_INSTANCE Error: last instance

1026 DIVA_ERR_PATH_DESTINATION Error: destination path must be
complete

1027 DIVA_ERR_INSTANCE_DOESNT_EXIST Error: instance does not exist

1028 DIVA_ERR_INSTANCE_OFFLINE Error: instance offline

1029 DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE Error: instance must be on tape

1030 DIVA_ERR_NO_INSTANCE_TAPE_EXIST Error: no tape instance exists

1031 DIVA_ERR_OBJECT_IN_USE Error: Object in use

1032 DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS Error: cannot accept more
requests

1033 DIVA_ERR_TAPE_DOESNT_EXIST Error: tape doesn't exist

1034 DIVA_ERR_INVALID_INSTANCE_TYPE Error: invalid instance type

1035 DIVA_ERR_ACCESS_DENIED Error: access denied

1036 DIVA_ERR_OBJECT_PARTIALLY_DELETED Error: Object is partially deleted

1037 DIVA_ERR_LICENSE_DOES_NOT_SUPPORT_THIS_FEATURE License does not support this
feature

1038 DIVA_ERR_COMPONENT_NOT_FOUND Error: component not found

1039 DIVA_ERR_OBJECT_IS_LOCKED Error: Object is locked

1040 DIVA_ERR_OBJECT_BEING_ARCHIVED Error: Object is being archived

Code Name Description

Code Name Description

1002 DIVA_ERR_INTERNAL Error: internal error

1008 DIVA_ERR_INVALID_PARAMETER Error: invalid parameter

1016 DIVA_ERR_OBJECT_ALREADY_EXISTS Error: Object already exists

1018 DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST Error: source or destination doesn't
exist

1040 DIVA_ERR_OBJECT_BEING_ARCHIVED Error: Object is being archived

REST API Configuration
Workflows

32

 DIVA Application Programming Guide

Partial Restore Request Formats and Manager Responses
The following formats—each identified by an INT value in format—are used when
issuing requests to DIVA Manager:

• 0—Bytes (range)

• 1—Not Used

• 2—Video GXF (timecode)

• 3—Video SEA (timecode)

• 4—Video AVI MATROX (timecode)

• 5—Video MPEG2 TS (timecode)

• 6—Video MXF (timecode)

• 7—Video Pinnacle (timecode)

• 8—Video Omneon (timecode)

• 9—Video Leitch (timecode)

• 10—Video Quantel (timecode)

• 11—Autodetect which video format (timecode)

• 12—File/Folder Based

• 13—DPX (range)

Request and Response Sample
Here are Partial Restore requests and Manager responses. Take note of the differences
in offsets and formats.

Sample 1: Body for Bytes Partial Restore
{
 "destinationServer": "sourcedest",
 "minRequestPriority": -1,
 "instance": -1,
 "qos": 0,
 "offsets": [
 {
 "destinationFile": "DNxHD-mxf-wrap-conf.mov",
 "offsetPairs": [
 {
 "bytesEnd": 1,
 "bytesBegin": 0,
 "timeCode": false
 },
 {
 "bytesEnd": 2,
 "bytesBegin": 1,
 "timeCode": false
 }
],
 "sourceFile": "DNxHD-mxf-wrap-conf.mov"

REST API Configuration
Workflows

33

 DIVA Application Programming Guide

 }
],
 "format": 0,
 "options": " ",
 "objectName": "Partial File",
 "maxRequestPriority": 100,
 "priority": -1,
 "filePathRoot": "restore",
 "collectionName": "Restore All Basic PFR",
 "destinationServer": "sourcedest",
 "minRequestPriority": -1,
 "instance": -1,
 "qos": 0,
 "offsets": [
 {
"offsets": [
 {
 "destinationFile": "DNxHD-mxf-wrap-conf.mov",
 "offsetPairs": [
 {
 "bytesEnd": 1,
 "bytesBegin": 0,
 "timeCode": false
 },
 {
 "bytesEnd": 2,
 "bytesBegin": 1,
 "timeCode": false
 }
],
 "sourceFile": "DNxHD-mxf-wrap-conf.mov"
 }
],
 "format": 0,
 "options": " ",
 "objectName": "Partial File",
 "maxRequestPriority": 100,
 "priority": -1,
 "filePathRoot": "restore",
 "collectionName": "Restore All Basic PFR"
 }
}

Sample 2: Body for Video GXF (timecode) Partial Restore
{
 "destinationServer": "sourcedest",
 "minRequestPriority": -1,
 "instance": -1,
 "qos": 0,
 "offsets": [
 {
 "destinationFile": "Profile.gxf",
 "offsetPairs": [
 {
 "timeCodeBegin": "00:00:00:00",
 "timeCodeEnd": "00:00:00:01",

REST API Configuration
Workflows

34

 DIVA Application Programming Guide

 "bytesEnd": 0,
 "bytesBegin": 0,
 "timeCode": true
 }
],
 "sourceFile": "Profile.gxf"
 }
],
 "format": 2,
 "options": " ",
 "objectName": "Partial File",
 "maxRequestPriority": 100,
 "priority": -1,
 "filePathRoot": "restore",
 "collectionName": "Restore All Basic PFR"
}

Sample 3: Body for File-Folder based Partial Restore
{
 "destinationServer": "sourcedest",
 "minRequestPriority": -1,
 "instance": -1,
 "qos": 0,
 "offsets": [
 {
 "fileFolder": {
 "name": "DNxHD_mxf_wrap_conf.mov",
 "option": ""
 }
 },
 {
 "fileFolder": {
 "name": "test.mov",
 "option": ""
 }
 }
],
 "format": 12,
 "options": " ",
 "objectName": "Partial File",
 "maxRequestPriority": 100,
 "priority": -1,
 "filePathRoot": "restore",
 "collectionName": "Restore All Basic PFR"
}

Sample 4: Body for DPX (Range) PR
{
 "destinationServer": "sourcedest",
 "minRequestPriority": -1,
 "instance": -1,
 "qos": 0,
 "offsets": [
 {
 "range": {

REST API Configuration
Workflows

35

 DIVA Application Programming Guide

 "end": 2,
 "begin": 1
 }
 },
 {
 "range": {
 "end": 4,
 "begin": 3
 }
 }
],
 "format": 13,
 "options": " ",
 "objectName": "Partial File",
 "maxRequestPriority": 100,
 "priority": -1,
 "filePathRoot": "restore",
 "collectionName": "Restore All Basic PFR"
}

36

Python DIVAScript
Configuration

This chapter describes DIVAScript for Python via the REST API.

Topics
■ About Python DIVAScript

■ Running DIVAScript in Server Mode

■ DIVAScript in Command-Line Mode

About Python DIVAScript
This version of DivaScript was developed in python and provides support for sending
commands via REST API and has as purpose to help develop and execute automated
functional tests via DIVA API.

DivaScript supports most DIVArchive commands that are available via DIVA API.

DIVAScript Commands Supported by REST API
• logIn

• logOut

• addgroup

• objectinfo

• objlist

• reqinfo

• version

• archive

• restore

• partialrestore

• copy

Python DIVAScript Configuration
Running DIVAScript in Server Mode

37

DIVA Application Programming Guide

• copyas

• delete

• trarchive

• scan

• stage

DIVAScript Configuration File Settings
diva_serv: serve_ip

diva_port: 8765

diva_user: diva_user

diva_pass: diva_pass

protocol: https

diva_version: 9

Running DIVAScript in Server Mode
To run DIVAScript in server mode, do the following:

1. Open the Windows command-line interface.

2. Type DIVAScript.exe and press Enter.

DIVAScript displays the list of valid DIVAScript parameters. DIVAScript doesn’t
require a parameter.

DIVAScript in Command-Line Mode
The requirements for running DIVAScript in Command-Line Mode follow:

You must first call the logIn with correct credentials so that the token is saved and
used for next commands.

If a parameter value contains spaces or other special characters, place the value
inside “ ”

Use the pipe (|) delimiter for parameters that allow a list of values (e.g: filelist from
archive or in / out from partialRestore).

Command line syntax is DivaScript.exe following commandName: one of the rec-
ognized command names, like archive or delete.

Other parameters: depending on the command, additional parameters may be
required.

The command name must be the first parameter. All other parameters can be
placed anywhere in the command line.

Python DIVAScript Configuration
DIVAScript in Command-Line Mode

38

DIVA Application Programming Guide

DivaScript command syntax
logIn

Login a user, returns a created token

Synopsis

DivaScriptPy.exe logIn -u USERNAME -p PASSWORD

logOut

Logout a user, returns the status.

Synopsis

DivaScriptPy.exe logOut -u USERNAME

addgroup

Create a tape group in the configuration.

Synopsis

DivaScriptPy.exe addgroup [-aqos ARCHIVEQOS] [-cpr COMPRESSIONENABLED] [-
cmt DESCRIPTION] [-en ENCRYPTIONENABLED] [-fmt FORMAT] -grp NAME

 [-nrt NUMBEROFTAPESUSEDFORREPACK] [-prio PRIORITY] [-rqos RESTOREQOS] [-
set SET] [-repk USEDFORREPACK] [-vw VERIFYWRITE] [-wf WORSTFITENABLED]

objinfo

Gets object information for a specific object.

Synopsis

DivaScriptPy.exe objinfo -obj OBJECT -col COLLECTION

objectsList

Gets object information for all objects based on filter criteria. Returns a list of objects.
On success, print one line for each matching object (name@category).

Synopsis

DivaScriptPy.exe objlist [-time INITIALTIME] [-lt LISTTYPE] [-objlt OBJECTSLISTTYPE]
[-maxs MAXLISTSIZE] -obj OBJECTNAME -col COLLECTIONNAME [-grp MEDI-
ANAME] [-lod LEVELOFDETAIL]

reqinfo

Get request by ID. Return the current status of a DIVA request.

On success, print the current status of the request (first line is the numerical status;
second line is the text status in capital letters).

If this command is issued with the “wait” parameter, the getRequestInfo command
will continue to run until the request related to the entered Request ID completes.

This parameter is important when it is necessary to wait for one DIVA request to
complete before another is submitted via DivaScript.

Synopsis

DivaScriptPy.exe reqinfo -req REQUESTID [-wait WAIT]

Python DIVAScript Configuration
DIVAScript in Command-Line Mode

39

DIVA Application Programming Guide

version

Gets DIVA build version and API version. Returns the DIVA build version and the API
version.

Synopsis

DivaScriptPy.exe version

archive

Submits an archive request to the DIVA Core Manager. This call returns as soon as the
Manager accepts the request.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output.

Synopsis

Divascript.exe archive -obj OBJECT -col COLLECTION -grp MEDIA_GROUP -src
SERVER -fpr FILES_PATH_ROOT -filelist FILELIST [-com COMMENTS]

The following arguments are required: -obj/--object, -col/--collection, -grp/--
media_group, -src/--server, -fpr/--files_path_root, -filelist/--filelist

When there multiple files, use pipe delimiter: -filelist "test.mov|gxf-sample.gxf"

DivaScriptPy.exe archive -col COLLECTIONNAME [-com COMMENTS] -filelist COM-
PONENTS -fpr FILEPATHROOT -grp MEDIA -obj OBJECTNAME [-opt OPTIONS] [-prio
PRIORITY] [-qos QOS] -src SOURCESERVER archive

restore

Submits an Object Restore request to the Manager and the Manager chooses the
appropriate instance to be restored. If the requested object is on media that is not
available, the request will fail.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output

Synopsis

DivaScriptPy.exe restore -col COLLECTIONNAME -src DESTINATIONSERVER -fpr
FILEPATHROOT [-inst INSTANCE] -obj OBJECTNAME [-opt OPTIONS] [-prio PRIORITY]
[-qos QOS]

partialrestore

Submits a Partial Object Restore request to the Manager and the Manager chooses the
appropriate instance to be restored. If the request was not accepted (for example, if the
requested object is on media not currently available) the request will generate an error.
The Manager will use the instanceID field to select the instance of the object to use for

Python DIVAScript Configuration
DIVAScript in Command-Line Mode

40

DIVA Application Programming Guide

the Partial Restore operation. The Manager will choose an appropriate instance to
restore if -1 is used.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output

Synopsis

DivaScriptPy.exe partialrestore -obj OBJECTNAME -col COLLECTIONNAME -src DES-
TINATIONSERVER -fpr FILEPATHROOT -fmt {Files and Folders,Byte Offset,Time-
code,Frames,DPX} [-in SOURCEFILE] [-out DESTINATIONFILE] [-start START] [-end
END] [-inst INSTANCE]

When there is a list of values, use pipe delimiter: -start "10|20|30" -end
"100|200|300"

copy

Submits a New Instance Creation request on the media specified by mediaName to the
Manager, and the Manager chooses the appropriate instance to be created. The
request will fail if the requested object is on media that is not available.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output

Synopsis

DivaScriptPy.exe copy -col COLLECTION [-inst INSTANCE] -grp MEDIA -obj OBJECT-
NAME [-opt OPTIONS] [-prio PRIORITY]

copyas

Submits a request for copying an archived object to a new object, with another name
or category, to the DIVA Core Manager. The Manager chooses the appropriate instance
as the source of the copy. The request will fail if the requested object is on an
unavailable media. All types of transfers (disk to disk, disk to tape, tape to disk, and tape
to tape) are supported.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output

Synopsis

DivaScriptPy.exe copyas -col COLLECTION [-com COMMENTS] [-inst INSTANCE] [-
media MEDIA] -newcol NEWCOLLECTIONNAME -newmedia NEWMEDIA -newobj
NEWOBJECTNAME -obj OBJECT [-opt OPTIONS] [-prio PRIORITY]

delete

Submits an Object Delete Request to the DIVA Core Manager. The Manager deletes the
specified instance OR every instance of the object if the instance is -1.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output

Synopsis

DivaScriptPy.exe delete [-col COLLECTION] [-inst INSTANCE] [-grp MEDIA] -obj
OBJECTNAME [-opt OPTIONS] [-prio PRIORITY]

Python DIVAScript Configuration
DIVAScript in Command-Line Mode

41

DIVA Application Programming Guide

trarchive

Submits a TranscodeArchive request to the DIVA Core Manager. The original object will
be restored to the local Actor cache, then transcoded to the format defined in the
option field. A new object containing the transcoded clip will then be archived back to
DIVA Core.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output.

Synopsis

DivaScriptPy.exe trarchive [-delc CASCADEDELETE] [-com COMMENTS] -dcol DES-
TINATIONCOLLECTIONNAME -dobj DESTINATIONOBJECTNAME -media MEDIA [-opt
OPTIONS] [-prio PRIORITY] [-qos QOS] -col SOURCECOLLECTIONNAME [-inst
SOURCEINSTANCEID] -obj SOURCEOBJECTNAME

scan

Submits a scan tape request to the DIVA Core Manager. This call returns as soon as the
Manager accepts the request.

Use reqinfo command to know when the request has been executed.

On success, divascript prints the request ID on the output.

Synopsis

DivaScriptPy.exe scan -col COLLECTION [-com COMMENTS] [-exl EXCLUSION] [-
imm IMPORTMODE] [-incl INCLUSION] [-min MINFILESIZE] [-prio PRIORITY] -bar-
code BARCODE -grp MEDIA -trial TRIALMODE

stage

Submits a Stage request to the media specified by targetMedia.

Use reqinfo command to know when the request has been executed.

On success, DivaScriptPy prints the request ID on the output.

Synopsis

DivaScriptPy.exe stage -col COLLECTION -days NUMDAYS -obj OBJECT -opt
OPTIONS [-prio PRIORITY] -retier RESTORETIER -stocls STORAGECLASS -target TAR-
GETMEDIA

42

Accessing Java API
Documentation

The Java API documentation is included with the Java API installation, but you can also
access it externally.

Note: The Java and C++ APIs have been deprecated.

Topics
■ Accessing Java API Documentation Before Installation

■ Accessing Java API Documentation After Installation

■ Known Issues

Accessing Java API Documentation Before
Installation

The Java API documentation is available before installation in the DIVA software
download on the Telestream Software Delivery Cloud. The documentation is located in
the JavaAPI directory in HTML format, and is viewable using any web browser.

Use this procedure to view the documentation before installing the API:

1. Download the API package located at: ednote validate version

https://www.telestream.net/download-files/diva/DIVArchiveAPI_V7.5.0.6.exe

2. Unzip the downloaded file and navigate to the JavaAPI directory.

3. Unzip the Java API compressed file.

4. Double-click the index.html file to open the documentation in your browser.

https://www.telestream.net/download-files/diva/DIVArchiveAPI_V7.5.0.6.exe

Accessing Java API Documentation
Accessing Java API Documentation After Installation

43

DIVA Application Programming Guide

Accessing Java API Documentation After
Installation

After installing the Java API, the documentation is available in the ~/doc/JavaDoc
directory.

Known Issues
Here are known issues when using APIs:

•The Java API does not support Partial Restore Instance; it always uses -1 as the
Instance ID and DIVA always picks the instance automatically.

•Older Java API releases do not return the same status codes as the C++ API.
Calls that fail in the C++ API due to DIVA_ERR_INVALID_PARAMETER might
fail in the Java API with a different error code; for example, DIVA_ERR_IN-
TERNAL, etc.

•GetObjectsDetailsList does not work correctly in the Java API 7.0 and prior
releases. They are skipped during automated tests because they cause ran-
dom timeout and hang issues which break the automation.

44

C++ API Programming
Guide

This chapter provides details about C++ programming.

Note: The C++ and Java APIs have been deprecated.

Topics
■ C++ API Overview

■ Session Management Commands

■ Jobs and Commands

Note: Telestream strongly recommends that you use the REST API rather than
previous APIs such as the C++ API. The C++ API is deprecated, but supported for
backward compatibility. The REST API offers new and enhanced features and security.

C++ API Overview
The DIVA API is written in the C++ programming language. All of the definitions are
contained in the include file named DIVAapi.h. In this document, parameters in
function signatures are qualified by IN and OUT to specify whether the parameter is
passed as an input or an output to the function. These qualifiers are not part of the C++
language and are only used for ease of readability. You must consider that these
qualifiers are equivalent to the following macro definitions:

• #define IN

• #define OUT

In this document, the term structure identifies both C-like structures and classes which
have only public data members and no function members1. Interfaces described in this
document show only data members, not constructors or destructors.

1. The operators new and delete are not considered function members.

C++ API Programming Guide
C++ API Overview

45

DIVA Application Programming Guide

The DIVA and DIVA Connect API use only standard data types provided directly by the
C++ language, and the vector data type provided by the STL (Standard Template
Library). For more information about the vector data type, refer to the STL
documentation on the OTN.

Note: The API is not supported under the Solaris operating system.

DIVA does not support the following API calls and features when used with complex
objects. Even if they are enabled, they will not be executed and no warnings are
generated.

• VerifyFollowingArchive

• VerifyFollowingRestore

• DeleteOnSource

• DeleteFile

• getObjectListbyFileName

• The getObjectInfo and getObjectDetailsList will only return a single file

When copying complex objects to legacy-formatted media, the Copy job terminates
returning a “Can't write a complex object in Legacy format” error, and an error code
through the API.

DIVA Release Compatibility
DIVA and DIVA Connect are backward compatible with all earlier releases of the C++
API. Therefore, the C++ API is compatible with any DIVA release 9.0 and later.

New features added to DIVA after the previous release of the C++ API in are not be
available; the client system must be upgraded to the latest release to use all features.

Managing Connections
The number of connections to the Manager is limited by the Manager and set in the
Manager configuration file. The default configuration is two hundred connections,
which includes GUI connections and all API connections. After the configured limit is
reached, the API will not allow additional connections to be created. See the
manager.conf file for additional information.

Caution: It is recommended that a new connection not be created for each job or
command sent to the Manager. Whenever possible allow the
connection to remain open for the lifetime of the session, or
application.

C++ API Programming Guide
C++ API Overview

46

DIVA Application Programming Guide

Securing the API
The following sections describe securing communications when using one of the
available DIVA APIs. The JAVA and C++ Initiators use the default keys and certificates file
in the %DIVA_API_HOME%/Program/security folder when connecting to the Manager.

The Manager Service is backward compatible with earlier versions of the JAVA, C++,
Web Services APIs, Enterprise Connect 1.0, and DIVA Connect establishing connections
over regular sockets. The earlier Java and C++ API releases can establish Manager
communications using either secure or insecure sockets. Secure communications are
only supported by the Manager.

The Manager Service and DIVA Connect 4.0 support both secure and insecure
communication ports simultaneously. The Manager default secure port is tcp/8000,
and the default insecure port is tcp/9000.

The C++ API includes a new call named DIVA_SSL_initialize added to set the
environment for secure communication with the Manager Service. DIVA_SSL_initialize
must be called before calling DIVA_connect with DIVA, otherwise the DIVA_connect
call will fail.

SSL (Secure Sockets Layer) and Authentication
DIVA consists of services in Java and C++. The format in how certificates and keys are
represented are different in each. DIVA has the keys and certificates for JAVA services in
a Java Keystore file, and in PEM (Privacy Enhanced Mail) format files for the C++
services.

When connecting to the WebUI for the first time, there is usually a security error page
displayed by the web browser. This error means that the HTTPS server certificate is not
trusted by the browser. This is the certificate for the REST API Gateway
(DIVA\Program\security\certificates\RestAPIService.p12). This issue is caused by the
fact that the certificates generated by DIVA were self-signed. This is verifiable by
showing the certificate because it has been issue “by” and “to” the same organization.
You may accept the risk and continue to connect, but you will always get the same error
for every new connection.

The DIVA security tool (DIVA\Program\security\bin\DIVASecurityTool.bat) has been
fixed to generate certificates signed DIVA certificate authority (DIVA_CA). With the new
security tool, the new certificates are no longer self-signed.

Before applying the security tool (before DIVA 9.0), make sure to make a backup copy of
DIVA\Program\DIVA_CA\DIVA_CA.cnf because it contains the list of domains or IP
addresses to connect to the Web App. If the Web App is being accessed using https://
IP_Address/DIVAWebUI/login, the IP address must be listed in the alt_names section.
This also applies to domain names or hostnames. The second security tool option will
automatically add the IP address and the hostname of the server to the alt_names
section is at the end of the file.

With the fixed security tool, you must generate new certificates (option 2) and restart
all the DIVA services. Contact Telestream Technical Support for assistance as necessary.

C++ API Programming Guide
C++ API Overview

47

DIVA Application Programming Guide

All internal DIVA services (Web App, DBBackup, Migration Utility, Actor, SPM, WFM,
SNMP, Robot Manager, RDTU, and Migration Services) can only connect to secure ports.
The Web App will report an SSL Handshake Timeout if you attempt to connect to the
non-secure port. Clients using the Java or C++ API are allowed to connect to either
port.

The following is a relative snippet from the Manager configuration file:
Port number on which the DIVA is waiting for incoming
connections.
Note: If you are using a Sony Managed Storage and plan to execute
the DIVA
on the same machine as the PetaSite Controller (PSC) software, be
aware
that the PSC server uses the 9000 port and that this cannot be
modified.
In that situation, you have to use a different port for the DIVA.
This same warning applies to FlipFactory which uses ports 9000
and 9001.
The default value is 9000.
DIVAMANAGER_PORT=9000

Secure port number on which the DIVA is waiting for incoming
connections.
The default value is 8000.
DIVAMANAGER_SECURE_PORT=8000

C++ API Programming Guide
C++ API Overview

48

DIVA Application Programming Guide

A new folder called %DIVA_API_HOME%/security is added to the API installation
structure as follows:
%DIVA_API_HOME%
 security
 conf

The conf folder contains the SSLSettings.conf file that is used to configure the SSL
handshake timeout.

Compilers
The following sections cover the supported API compilers.

Visual C++ Compiler on Windows
These section describe using the Visual C++ compiler on the Windows operating
system.

Supported Platforms
There are two separate variants of the API for Windows: 32-bit and 64-bit. The 32-bit
model can be used on both x86 and x64 platforms. However, the 64-bit variant requires
a 64-bit platform. The API for Windows is supported on the following Windows releases:

• Microsoft Windows Server 2022

• Microsoft Windows Server 2019

• Microsoft Windows Server 2016

Supported Compilers
The API is compiled and tested using the following compilers:

• Microsoft Visual C++ 2010 (Release 10)

Including Microsoft Platform SDK 7.0a (April 2010)

• Microsoft Visual C++ 2012 (Release 11)

Including Microsoft Platform SDK 7.1A (November 2012)

• Microsoft Visual C++ 2013 (Release 13)

Including Microsoft Platform SDK 8.0A (October 2013)

• Microsoft Visual C++ 2019

Including Microsoft Platform SDK 10

API Library Options
The API is delivered with both static and dynamic libraries. Each library is available in a
standard format with debug support and Unicode compatibility. The different options
may be found in the following build directories:

C++ API Programming Guide
C++ API Overview

49

DIVA Application Programming Guide

• Static Library

Static_Release

• Static Library with Debug Support

Static_Debug

• Dynamic Library

Dynamic_Release

• Dynamic Library with Debug Support

Dynamic_Debug

API Compilation
Choose the 8 Bytes setting for the Strict Member Alignment option under C/C++ Code
Generation in the project settings.

The following list identifies the library path that corresponds to each run time library.
The run time library is normally changed automatically depending upon the selected
build configuration.

• Multithreaded

Static_Release

• Debug Multithreaded

Static_Debug

• Multithreaded DLL

Dynamic_Release

• Debug Multithreaded DLL

Dynamic_Debug

The DIVA API.lib file, or the path to this file, must be included in the link settings (see
Initiator Sample Program API Usage). The API can be included in an application compiled
with either the IDE or a script using the command line compiler.

After the application is built, either add the folder where the API.dll file is located to
your PATH environment variable, or copy the API.dll file into the folder containing the
executable file.

Initiator Sample Program API Usage
The Initiator program is included with the API and is an example of the API usage. This
is a command line program that uses the API to send jobs and get data from DIVA. Use
the following project files to view the compiler settings and build the program:

• Visual C++ .NET (Release 10)

doc\CppInitiator\InitiatorVc100.vcxproj(64-bit API)

• Visual C++ .NET (Release 11)

doc\CppInitiator\InitiatorVc110.vcxproj(64-bit API)

C++ API Programming Guide
Session Management Commands

50

DIVA Application Programming Guide

• Visual C++ .NET (Release 12)

doc\CppInitiator\InitiatorVc120.vcxproj(64-bit API)

Using the API in Multithreaded Applications
The API supports using multiple threads concurrently with the following restrictions
(see the related function's specific documentation for additional information):

• The DIVA_connect() and DIVA_disconnect() functions share the same critical sec-
tion. Although multiple simultaneous connections are supported, they must be
opened and closed one at a time.

• The init, get, and close functions used to retrieve list information (Objects List or
Objects Tape Information List) also use a Critical Section to prevent concurrent
threads reinitializing the list while another thread is currently reading it. The critical
section is entered when the list is initialized and left when the list is closed. There
are two separate critical sections, one for each type of list.

• All of the other DIVA functions can be called simultaneously by different threads.
For example, one thread can call the DIVA_archiveObject() function while another
one is calling DIVA_getArchiveSystemInfo().

Using Unicode Strings in the API
The API (and other DIVA components) support wide character strings. Only 64-bit
Unicode is delivered with the API. The _UNICODE constant must be defined before
including the DIVAapi.h header file to be able to use the wchar_t and wstring.

In addition, the application must be linked with one of the Unicode releases in the
library (for example, in lib/Release_Unicode).

Defining, or not defining, the _UNICODE macro will change the implementation of the
DIVA_STRING and DIVA_CHAR types.

The _T macro is recommended when working with static strings:

Example:
_T(“Hello”)

Session Management Commands
The following three sections describe the commands used to control the session
connection.

Type _UNICODE Not Defined _UNICODE Defined

DIVA_STRING string wstring

DIVA_CHAR char wchar_t

C++ API Programming Guide
Session Management Commands

51

DIVA Application Programming Guide

DIVA_getApiVersion
Returns the string pointed to by version of the major part of the release number.

Synopsis
#include “DIVAapi.h”

void DIVA_getApiVersion (
 OUT DIVA_STRING *version
);

• version

Points to a string that contains the major part of the release for this API.

DIVA_SSL_initialize
The DIVA_SSL_initialize call sets the environment for secure communication with the
Manager Service. Call DIVA_SSL_initialize before calling DIVA_connect with DIVA,
otherwise the DIVA_connect call will not establish a secure connection.

Synopsis
DIVA_STATUS DIVA_SPEC DIVA_SSL_initialize(
 DIVA_STRING KeyPath, // [in] Full path of the Key file contain
the private key and certificate in PEM format.
 DIVA_STRING TrustStorePath, // [in] Full path of the file
containing Trust certificates in PEM format.
 DIVA_STRING KeyPassword // [in] Password for the private key
)

DIVA_connect
Opens a connection with the Manager. All of the other API functions are only available
when a connection is open. A connection cannot be opened if another connection is
already open. To open a new connection, the previous one must be explicitly closed by
calling DIVA_disconnect().

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber
);
DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber,
 IN string userName,
 IN string password,
 IN string applicationName
);
DIVA_STATUS DIVA_connect (

C++ API Programming Guide
Session Management Commands

52

DIVA Application Programming Guide

 IN string managerAddress,
 IN int portNumber,
 IN string userName,
 IN string password,
 IN string applicationName
 IN string userInfo
);

• managerAddress

The IP address of the Manager.

• portNumber

The Manager listening port. The default port is pointed to by the constant value
DIVA_MGER_DEFAULT_PORT.

• userName

The user name.

• password

The password associated with the user name.

• applicationName

The name of the application.

• userInfo

User specific and specified information.

Multithreaded Applications:
A critical section protects both the DIVA_connect() and DIVA_disconnect()
functions. If a thread is already in the process of closing the connection to the Manager,
other threads must wait until the running thread exits the DIVA_connect() function
before being able to open or close the connection.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system is no longer able to accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

C++ API Programming Guide
Session Management Commands

53

DIVA Application Programming Guide

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_NO_ARCHIVE_SYSTEM

There was a problem when establishing a connection with the specified DIVA sys-
tem.

• DIVA_ERR_WRONG_VERSION

The release levels of the API and the Manager are not compatible.

• DIVA_ERR_ALREADY_CONNECTED

A connection is already open.

Also see DIVA_disconnect.

DIVA_disconnect
Closes a connection with the Manager. When a connection is closed, only the
DIVA_connect() function can be called. If no connection is currently open, this
function has no effect and returns DIVA_OK.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_disconnect ()

Multithreaded Applications
A critical section protects both the DIVA_connect() and DIVA_disconnect()
functions. If a thread is already in the process of closing the connection to the Manager,
other threads must wait until the running thread exits the DIVA_disconnect()
function before being able to open or close the connection.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

C++ API Programming Guide
Jobs and Commands

54

DIVA Application Programming Guide

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_DISCONNECTING

There was a problem when disconnecting. The connection is considered to still be
open.

Also see DIVA_connect.

Jobs and Commands
The following sections discuss all of the available API commands for use in an
application.

DIVA_addGroup
This function adds a new Tape Group.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_addGroup (
IN DIVA_STRING groupName,
IN int associatedSet,
IN DIVA_STRING comment,
IN bool toBeRepacked,
IN bool worstFitEnabled,
IN int worstFitRepackTapes,
IN int mediaFormatId
);

• groupName

The name of the Tape Group to be added.

• associatedSet

The set of tapes to associate with the new Tape Group. This value must be strictly
greater than zero.

• comment

A text description of the new Tape Group.

• toBeRepacked

If true, tapes belonging to this Tape Group are eligible for automatic repacking.

• worstFitEnabled

If true, Worst Fit Policy (access speed optimization) will apply.

C++ API Programming Guide
Jobs and Commands

55

DIVA Application Programming Guide

• worstFitRepackTapes

The number of tapes reserved for Worst Fit Repacking.

• mediaFormatId

The data format to be used by the tapes assigned to this Tape Group. The value can
be DIVA_MEDIA_FORMAT_LEGACY or DIVA_MEDIA_FORMAT_AXF.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

DIVA system can not accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_GROUP_ALREADY_EXISTS

The specified Tape Group already exists.

DIVA_archiveObject
Submits an archive job to the Manager. This function returns as soon as the Manager
accepts the job. The application must call the function DIVA_getRequestInfo() to
check that the operation completed successfully.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_archiveObject (
IN DIVA_STRING objectName,

C++ API Programming Guide
Jobs and Commands

56

DIVA Application Programming Guide

IN DIVA_STRING objectCollection,
IN DIVA_STRING source,
IN DIVA_STRING mediaName,
IN DIVA_STRING filesPathRoot,
IN vector<DIVA_STRING> filenamesList,
IN DIVA_ARCHIVE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING comments,
IN DIVA_STRING archiveOptions,
OUT int requestNumber
);

• objectName

The name of the object to be archived.

• objectCategory

The Collection of the object to be archived.

• source

The name of the Source Server (for example, the video server, browsing server, and
so on). This name must be known to the DIVA configuration description.

• mediaName

The tape group or disk array where the object is to be saved. The media may be
defined as follows:

• Name (of the Tape Group or Array)

Provide the tape group or disk array name as defined in the configuration. The
object is saved to the specified media and assigned to the default SP (Storage Plan).

• SP Name

Provide a SP Name (Storage Plan Name) as defined in the configuration. The object
will be assigned to the specified Storage Plan and saved to the default media speci-
fied.

• Both of the above (Name and SP Name)

The object is saved to the specified media as in Name, and assigned to the specified
Storage Plan as in SP Name. The Name and the SP Name must be separated by the
& delimiter (this is configurable).

When this parameter is a null string, the default group of tapes called DEFAULT is
used. Complex objects can only be saved to AXF media types.

• filesPathRoot

The root folder for the files specified by the filenamesList parameter.

• filenamesList

List of file path names relative to the folder specified by the filesPathRoot
parameter. Path names must be absolute names when the filesPathRoot is null.

If the -gcinfilelist option is specified the Genuine Checksum is included with a
colon separator between the file name and the GC value as follows:
test1.txt:a6f62b73f5a9bf380d32f062f2d71cbc
test2.txt:96bf41e4600666ff69fc908575c0319

C++ API Programming Guide
Jobs and Commands

57

DIVA Application Programming Guide

• qualityOfService

One of the following codes executes the job using the specified QOS:
– DIVA_QOS_DEFAULT

Archiving is performed according to the default Quality Of Service (currently
direct and cache for archive operations).

– DIVA_QOS_CACHE_ONLY

Use cache archive only.
– DIVA_QOS_DIRECT_ONLY

Use direct archive only; no disk instance is created.
– DIVA_QOS_CACHE_AND_DIRECT

Use cache archive if available, or direct archive if cache archive is not available.
– DIVA_QOS_DIRECT_AND_CACHE

Use direct archive if available, or cache archive if direct archive is not available.

Additional and optional services are available. To request those services, use a
logical OR between the previously documented Quality Of Service parameter
and the following constant:
* DIVA_ARCHIVE_SERVICE_DELETE_ON_SOURCE

Delete source files when the tape migration is done. Available for local
Source Servers, disk Source Servers, and standard FTP Source Servers. This
feature is not available for complex objects.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• comments

Optional information describing the object. This can be a null string.

C++ API Programming Guide
Jobs and Commands

58

DIVA Application Programming Guide

• archiveOptions

Additional options for performing the transfer of data from the Source Server to
DIVA. These options supersede any options specified in the DIVA configuration
database. Currently the possible values for archiveOptions are as follows:
– Null string

A null string specifies no options.
– -delete_on_source

Executes a delete on the Source Server after an archive job completes.
– -r

Using -r specifies that every name in filenamesList that refers to a folder must
be scanned recursively. This also applies when FilesPathRoot is specified and
an asterisk designates the files to be archived. This option can be used when
archiving from a local Source Server or from a standard FTP Server.

– -login

A user name and password is required to log in to some Source Servers. This
option obsoletes the -gateway option from earlier releases.

– -pass

The password used with -login.

• -gcinfilelist [gcType]

Specifies that GC (Genuine Checksum) values are included in the file names list. The
value of gcType must match the Manager's default checksum type as specified in
the DIVA configuration (MD5 by default). The GC values are then used to verify the
transfer from the Source Server.

• requestNumber

The job number assigned to this job. This number is used for querying the status or
canceling the job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

Manager can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

C++ API Programming Guide
Jobs and Commands

59

DIVA Application Programming Guide

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

The Manager or API detected an internal error.

• DIVA_ERR_INVALID_PARAMETER

The Manager did not understand a parameter value.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default value is three hundred.

• DIVA_ERR_GROUP_DOESNT_EXIST

The specified tape group or disk array does not exist.

• DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST

The specified Server is unknown by the DIVA system.

DIVA_associativeCopy
Submits a job for creating new instances in the Tape Group (specified by group). DIVA
guarantees that these instances are stored sequentially on tapes:

• The job is completed only when every object is copied to the same tape.

• In the case of drive or tape failure during a write operation, instances currently writ-
ten are erased and the job is retried once.

• The choice of the tape to be used for the copy follows the policy used for the
archive operation (written tapes with enough remaining size regardless of optimi-
zations).

• Associative Copy does not span tapes—the job terminates (and is retried once)
instead of spanning. The job terminates if the sum of the size of the objects to copy
exceeds the capacity of every individual tape present in the Managed Storage.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_associativeCopy (
IN vector<DIVA_OBJECT_SUMMARY> *objectsInfo,
IN DIVA_STRING groupName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

C++ API Programming Guide
Jobs and Commands

60

DIVA Application Programming Guide

• objectsInfo

A pointer to a list of objects defined by a name and Collection pair.

• groupName

The name of the Tape Group where the new instance will be located. Complex
objects can only be saved to AXF media types. Associative Copy to a disk array is
not available.

• priorityLevel

The level of priority for this job. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the
lowest priority and one hundred is the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• options

An optional string attribute for specifying additional parameters to the job.

• requestNumber

A number identifying the job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The Manager system is no longer able to accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

C++ API Programming Guide
Jobs and Commands

61

DIVA Application Programming Guide

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file and the default value is three hundred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_OBJECT_OFFLINE

No available instance for this object. Tape instances are ejected and no Actor could
provide a disk instance.

• DIVA_ERR_GROUP_DOESNT_EXIST

The specified tape group or disk array does not exist.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being archived, restored, deleted, and so on).

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

Also see DIVA_archiveObject and DIVA_copyToGroup and DIVA_copy.

DIVA_cancelRequest
Submits a Cancel operation to the Manager. This function returns as soon as the
Manager accepts the operation. The application must call the function
DIVA_getRequestInfo() to check that the operation was successful.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_cancelRequest (
IN int requestNumber,
IN DIVA_STRING options

C++ API Programming Guide
Jobs and Commands

62

DIVA Application Programming Guide

);

• requestNumber

A number identifying the job to be canceled. This parameter can be set to
DIVA_ALL_REQUESTS to cancel all cancelable jobs.

• options

An optional string attribute for specifying additional parameters to the job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_NO_SUCH_REQUEST

The requestNumber identifies no job.

Also see DIVA_getRequestInfo.

DIVA_changeRequestPriority
Submits a Change Request Priority job to the Manager. This function returns as soon as
the Manager accepts the job. The application must call the DIVA_getRequestInfo()
function to check that the operation was successful.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_changeRequestPriority (
IN int requestNumber,

C++ API Programming Guide
Jobs and Commands

63

DIVA Application Programming Guide

IN int priorityLevel,
IN DIVA_STRING passThruOptions
);

• requestNumber

A number identifying the job to be changed.

• priorityLevel

The level of priority for this job. The priorityLevel can be in the range zero to one
hundred. The value zero is the lowest priority and one hundred is the highest prior-
ity.

There are five predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

The use of DIVA_DEFAULT_REQUEST_PRIORITY is not allowed with this function.

Using a value either outside of the range of zero to one hundred or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• passThruOptions

An optional string attribute for specifying additional parameters to the job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

C++ API Programming Guide
Jobs and Commands

64

DIVA Application Programming Guide

• DIVA_ERR_NO_SUCH_REQUEST

The requestNumber identifies no job.

• DIVA_ERR_INVALID_PARAMETER

A parameter value has not been understood by the Manager.

Also see DIVA_getRequestInfo.

DIVA_copyToGroup and DIVA_copy
Submits a new instance creation job on the media specified by mediaName to the
Manager, and the Manager chooses the appropriate instance to be created. This
function returns as soon as the Manager accepts the job. The application must call the
DIVA_getRequestInfo() function to check that the operation was successful.

The job will fail if the job’s object is on media that is not available. The Media Names
(tape barcodes and disk names) that contain instances of the object will be included in
the additionalInfo field of the DIVA_getRequestInfo() response.

A tape group may contain two instances of the same object. In this case, Manager will
terminate the job if both instances cannot be written on two different tapes. A disk
array can contain two instances of the same object; however Manager will terminate
the job if the new instance cannot be written on a different disk. There can be a
maximum of only one instance of each object per disk or tape.

Synopsis
DIVA_copyToGroup is a public alias to DIVA_copy and performs the same
functionality.
#include “DIVAapi.h”

DIVA_STATUS DIVA_copy (
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN int instanceID,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

DIVA_STATUS DIVA_copyToGroup (
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN int instanceID,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

C++ API Programming Guide
Jobs and Commands

65

DIVA Application Programming Guide

• objectName

The name of the object to be copied.

• objectCategory

The Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• instanceID

The instance's identifier. DIVA_ANY_INSTANCE as the Instance ID means that DIVA
will choose the appropriate instance.

• mediaName

The media (tape group or disk array) where the new instance will be located.

• priorityLevel

The level of priority for this job. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the
lowest priority and one hundred is the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• options

An optional string attribute for specifying additional parameters to the job.

• requestNumber

A number identifying the job to be changed.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

C++ API Programming Guide
Jobs and Commands

66

DIVA Application Programming Guide

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value has not been understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs has reached the maximum allowed value. This vari-
able is set in the manager.conf configuration file. The default is three hundred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The instance specified for restoring this object does not exist.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_OBJECT_OFFLINE

No available instance for this object. Tape instances are ejected and no Actor could
provide a disk instance.

• DIVA_ERR_INSTANCE_OFFLINE

The instance specified for restoring this object is ejected, or the Actor owning the
specified disk instance is not available.

• DIVA_ERR_GROUP_DOESNT_EXIST

The specified Tape Group does not exist.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being archived, restored, deleted, and so on).

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

Also see DIVA_archiveObject.

C++ API Programming Guide
Jobs and Commands

67

DIVA Application Programming Guide

DIVA_copyToNewObject
Submits a job for copying an archived object to a new object, with another name or
Collection, to the Manager. The Manager chooses the appropriate instance as the
source of the copy. This function returns as soon as the Manager accepts the job. The
application must call the DIVA_getRequestInfo() function to check that the
operation was successful.

The job will fail if the job’s object is on an unavailable media. The media names (tape
barcodes and disk names) that contain instances of the object will be included in the
additionalInfo field of the DIVA_getRequestInfo() response.

All types of transfers (disk to disk, disk to tape, tape to disk, and tape to tape) are
supported.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_copyToNewObject (
IN const DIVA::ObjectInstanceDescriptor &source,
IN const DIVA::ObjectInstanceDescriptor &target,
IN const DIVA::RequestAttributes &attrs,
IN DIVA STRING options,
OUT int *requestNumber
);

• source

The description of the object or object instance to be copied:

• source.objectName

The Source Server object name (required).

Note: Object Names cannot begin with a dollar sign ($).

• source.objectCategory

The Source Server object Collection (required).

• source.group

The Source Server object instance tape group or disk array. This is optional. How-
ever, if specified DIVA will use this instance as the Source Server.

• source.instanceID

The Instance ID of the Source Server object instance. This is optional. However, if
specified and not equal to DIVA_ANY_INSTANCE, DIVA will use this instance as the
Source Server. The source.group parameter will be ignored if source.instanceID
is specified.

If both source.group and source.instanceID are omitted, DIVA will use the
most suitable instance (that provides the best performance) as a source.

• target

The description of the target object:

C++ API Programming Guide
Jobs and Commands

68

DIVA Application Programming Guide

• target.objectName

The target object name (required).

Note: Object Names cannot begin with a dollar sign ($).

• target.objectCategory

The target object Collection (required).

• target.group

See the following paragraph.

• target.instanceID

This call ignores this value.

Either the object name or Collection (or both) must be different from name or Col-
lection of the Source Server object. The job will fail if the target object already exists
in DIVA.

• attrs

The job attributes:

• attrs.priority

The job priority (optional). If this is not explicitly set the default value is used. Possi-
ble values are zero (lowest) to one hundred (highest).

• attrs.qos

QOS (Quality of Service) is not applicable to this job and this call ignores this value.

• attrs.comments

The target object's comments (optional). If no value is specified the Source Server
object's comments are inherited.

• attrs.options

This job has no additional options and this call ignores this value.

• requestNumber

The number identifying the job that is returned by DIVA.

C++ API Programming Guide
Jobs and Commands

69

DIVA Application Programming Guide

DIVA_STATUS DIVA_copyToNewObject (
IN const DIVA_STRING &objectName,
IN const DIVA_STRING &objectCategory,
IN const DIVA_STRING &objectMedia,
IN int objectInstanceID,
IN const DIVA_STRING &newObjectName,
IN const DIVA_STRING &newObjectCategory,
IN const DIVA_STRING &newObjectInstanceMedia,
IN const DIVA_STRING &comments,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

• objectName

The name of the Source Server object.

• objectCategory

The Collection of the Source Server object.

• objectMedia

The tape group or disk array of the Source Server object instance (optional). If spec-
ified (not empty), DIVA will use this instance as a Source Server. Complex objects
can only be saved to AXF formatted media types.

• objectInstanceID

The Instance ID of the Source Server object instance (optional). If specified and not
equal to DIVA_ANY_INSTANCE, DIVA will use this instance as the Source Server.
This call ignores the ObjectMedia parameter if an instanceID value is specified.

If both objectMedia and instanceID are not specified, DIVA will use the most
suitable instance (providing the best performance) as the Source Server.

• newObjectName

The target object name.

Note: Object Names cannot begin with a dollar sign ($).

• newObjectCategory

The target object Collection. Either the object name or Collection (or both) must be
different from name or Collection of the Source Server object.

This job will fail if the target object already exists in DIVA.

• newObjectInstanceMedia

The tape group or disk array where the object will be saved. The media may be
defined as follows:

• Name (of the Tape Group or Array)

Provide the tape group or disk array name as defined in the configuration. The
object is saved to the specified media and assigned to the default SP (Storage Plan).

C++ API Programming Guide
Jobs and Commands

70

DIVA Application Programming Guide

• SP Name

Provide a Storage Plan Name as defined in the configuration. The object will be
saved to the default media specified in the Storage Plan and assigned to the speci-
fied Storage Plan.

• Both of the above (Name and SP Name)

The object is saved to the specified media as in Name above. The object is assigned
to the specified SP as in SP Name above. The Name and the SP Name must be sepa-
rated by the & delimiter (this is configurable).

• comments

Optional information describing the target object. If left empty the Source Server
object comments are inherited.

• priorityLevel

Level of priority for this job. The possible values can be in the range zero to one
hundred, and the DIVA_DEFAULT_REQUEST_PRIORITY (use default job priority).

• options

Optional string attribute for specifying additional parameters to the job.

• requestNumber

The job number assigned to this job by DIVA.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

C++ API Programming Guide
Jobs and Commands

71

DIVA Application Programming Guide

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs has reached the maximum allowed value. This vari-
able is set in the manager.conf configuration file. The default value is three hun-
dred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The instance specified for restoring this object does not exist.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_OBJECT_OFFLINE

No available instance for this object. Tape instances are ejected and no Actor could
provide a disk instance.

• DIVA_ERR_INSTANCE_OFFLINE

The instance specified for restoring this object is ejected, or the Actor owning the
specified disk instance is not available.

• DIVA_ERR_GROUP_DOESNT_EXIST

The specified Tape Group does not exist.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being archived, restored, deleted, and so on).

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

Also see DIVA_copyToGroup and DIVA_copy.

DIVA_deleteGroup
Deletes the Tape Group passed as an argument. A Tape Group can only be deleted
when the Tape Group is empty.

Synopsis
#include “DIVAapi.h”

IN DIVA_STRING groupName
DIVA_STATUS DIVA_deleteGroup (
);

• groupName

The name of the Tape Group to be deleted.

C++ API Programming Guide
Jobs and Commands

72

DIVA Application Programming Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h.

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_GROUP_DOESNT_EXIST

The specified Tape Group does not exist.

• DIVA_ERR_GROUP_IN_USE

The Tape Group contains at least one object currently in use (being archived,
restored, deleted, and so on).

DIVA_deleteInstance
Deletes an object instance.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_deleteInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN int instanceID,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

C++ API Programming Guide
Jobs and Commands

73

DIVA Application Programming Guide

DIVA_STATUS DIVA_deleteInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

• objectName

The name of the object to be deleted.

• objectCategory

The Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• instanceID

The instance's identifier

• mediaName

Defines the media that contains the valid instance. If the instanceId is -1, the
instance on the media will be deleted. If the media contains two or more instances,
only one of the instances will be deleted.

• priorityLevel

The level of priority for this job. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the
lowest priority and one hundred is the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• options

An optional string attribute for specifying additional parameters to the job.

• requestNumber

A number identifying the job.

C++ API Programming Guide
Jobs and Commands

74

DIVA Application Programming Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs has reached the maximum allowed value. This vari-
able is set in the manager.conf configuration file. The default value is three hun-
dred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The specified instance does not exist.

• DIVA_ERR_LAST_INSTANCE

DIVA_deleteObject() must be used to delete the last instance of an object.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being archived, restored, deleted, and so on).

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

C++ API Programming Guide
Jobs and Commands

75

DIVA Application Programming Guide

See also DIVA_getObjectInfo.

DIVA_deleteObject
Submits an object Delete job to the Manager. The Manager deletes every instance of
the object. This function returns as soon as the Manager accepts the job. To check that
the operation was successful the application must call the function
DIVA_getRequestInfo().

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_deleteObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

• objectName

The name of the object to be deleted.

• objectCategory

The Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• priorityLevel

The level of priority for this job. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the
lowest priority and one hundred is the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• options

An optional string attribute for specifying additional parameters to the job.

C++ API Programming Guide
Jobs and Commands

76

DIVA Application Programming Guide

• requestNumber

A number identifying the job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs has reached the maximum allowed value. This vari-
able is set in the manager.conf configuration file. The default value is three hun-
dred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being archived, restored, deleted, and so on).

• DIVA_ERR_OBJECT_BEING_ARCHIVED

The specified object does not exist in the database, but it is currently being
archived.

See also DIVA_getRequestInfo and DIVA_deleteInstance.

C++ API Programming Guide
Jobs and Commands

77

DIVA Application Programming Guide

DIVA_ejectTape
Submits an Eject job to DIVA. The job completes when the specified tapes are outside
of the Managed Storage.

If at least one of the tapes does not exist, is already ejected, or currently in use by
another job, the DIVA_ERR_INVALID_PARAMETER status code is returned and no
tapes are ejected.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_ejectTape (
IN vector<DIVA_STRING> *vsnList,
IN bool release
IN DIVA_STRING comment,
IN int priorityLevel,
OUT int *requestNumber
);

• vsnList

List of VSNs for identifying the tapes to be ejected.

• release

When true, perform a DIVA_release() on every instance located on the success-
fully ejected tapes.

• comment

Externalization comment.

• priorityLevel

The level of priority for this job. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the
lowest priority and one hundred is the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• requestNumber

The number identifying the job.

C++ API Programming Guide
Jobs and Commands

78

DIVA Application Programming Guide

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager, or at least one of the bar-
codes refers to a bad tape (that is, an unknown tape, offline tape, or tape in use).

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs has reached the maximum allowed value. This vari-
able is set in the manager.conf configuration file. The default value is three hundred.

See also DIVA_insertTape.

DIVA_enable_Automatic_Repack
Enable or disable the automatic repack scheduling in the Manager.

When the automatic repack scheduling is enabled, the schedule defined in the Web
App is applied and tapes belonging to Tape Groups for which repack is allowed can be
repacked according to the other automatic repack settings.

When the automatic repack scheduling is disabled, all running automatic repack jobs
might be canceled (or not, according to other automatic repack settings), and no other
automatic repack jobs will be started until the automatic repack scheduling is turned
on again (either from this API or from the Web App).

Synopsis
#include “DIVAapi.h”

C++ API Programming Guide
Jobs and Commands

79

DIVA Application Programming Guide

DIVA_STATUS DIVA_enableAutomaticRepack (
IN bool enable
);

• enable

Set true to enable automatic repack scheduling, false to disable.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h.

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_getArchiveSystemInfo
Retrieves general information about the DIVA system.

A DIVA system communicates with a Robotic System composed of one or more
independent ACSs (Automated Cartridge Systems). An ACS is composed of one or more
LSMs (Managed Storage Modules) that can exchange tapes through a PTP (Pass
Through Port). Each tape drive is located in a LSM.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getArchiveSystemInfo (
IN string options;
OUT DIVA_GENERAL_INFO *info
);

C++ API Programming Guide
Jobs and Commands

80

DIVA Application Programming Guide

• info

Pointer to a DIVA_GENERAL_INFO structure that will be modified to include infor-
mation about the DIVA system.

typedef enum {
DIVA_IS_ON = 0,
DIVA_IS_OFF,
DIVA_GLOBAL_STATE_IS_UNKNOWN
} DIVA_GLOBAL_STATE;

typedef enum {
DIVA_LIBRARY_OK = 0,
DIVA_LIBRARY_OUT_OF_ORDER,
DIVA_LIBRARY_STATE_UNKNOWN
} DIVA_LIBRARY_STATE;

class DIVA_ACTOR_AND_DRIVES_DESC {
public:
string actorName;
string actorAddress;
bool actorIsAvailable;
vector<string> *connectedDrives;
bool repackEnabled;
bool classicEnabled;
bool cacheArchiveEnabled;
bool directArchiveEnabled;
bool cacheRestoreEnabled;
bool directRestoreEnabled;
bool deleteEnabled;
bool copyToGroupEnabled;
bool associativeCopyEnabled;
int cacheForRepack;
};
class DIVA_LSM_DESC {

public:
string lsmName;
int lsmID;
bool lsmIsAvailable;
};

class DIVA_DRIVE_DESC {
public:
string driveName;
int driveTypeID;
string driveType;
int lsmID;
bool driveIsAvailable;
bool repackEnabled;
bool classicEnabled;
};

class DIVA_GENERAL_INFO {
public:
DIVA_GLOBAL_STATE status;
DIVA_LIBRARY_STATE lib_status;

C++ API Programming Guide
Jobs and Commands

81

DIVA Application Programming Guide

int totalNumberOfObjects;
vector<DIVA_ACTOR_AND_DRIVES_DESC> *actorsDrivesList;
vector<DIVA_LSM_DESC> *lsmList;
vector<DIVA_DRIVE_DESC> *drivesList;
int numberOfBlankTapes;
long remainSizeOnTapes;
long totalSizeOnTapes;
int capSize;
vector<int> *pendingRequests;
vector<int> *currentRequests;
int numOfAvailableActors
int numOfAvailableDrives
int numOfAvailableDisks
string siteName
string siteIpAddress
int sitePort
int firstUsedRequestId
int lastUsedRequestId
};

The following parameters are listed in the order they appear in the preceding code
example. Therefore there may be duplicates because the same parameter is used in
different places in the code to represent different items.

• actorName

The name of the Actor.

• actorAddress

The Actor IP address.

• actorIsAvailable

Determines if the Actor is available.

• connectedDrives

Identifies the connected drives.

• repackEnabled

This is true if Repack is enabled.

• classicEnabled

This parameter is maintained for compatibility purposes only. This is only true if all
seven standard operations are enabled.

• cacheArchiveEnabled

This is true if Cached Archive is enabled.

• directArchiveEnabled

This is true if Direct Archive is enabled.

• cacheRestoreEnabled

This is true if Cached Restore is enabled.

• directRestoreEnabled

This is true if Direct Restore is enabled.

C++ API Programming Guide
Jobs and Commands

82

DIVA Application Programming Guide

• deleteEnabled

This is true if Delete is enabled.

• copyToGroupEnabled

This is true if Copy To Group is enabled.

• associativeCopyEnabled

This is true if Associative Copy is enabled.

• cacheForRepack

This is true if Cached Repack is enabled.

• lsmName

User-friendly Managed Storage Module name.

• lsmID

This is the unique LSM ID.

• lsmIsAvailable

This is true if the LSM identified by the preceding lsmID parameter is available for
DIVA.

• driveName

This is the Drive Name.

• driveTypeID

This is the Drive Type ID.

• driveType

This is the Drive Type Name.

• lsmID

This is the ID of the LSM containing the drive. See lsmList.

• driveIsAvailable

This is true if the identified drive is available for DIVA.

• status

The status of DIVA.

• lib_status

This is ok if at least one ACS is online. See lsmList.

• totalNumberOfObjects

The number of objects managed by this DIVA system.

• actorsDrivesList

<DIVA_ACTOR_AND_DRIVES_DESC>

• lsmList

<DIVA_LSM_DESC>

C++ API Programming Guide
Jobs and Commands

83

DIVA Application Programming Guide

• drivesList

<DIVA_DRIVE_DESC>

• numberOfBlankTapes

The number of blank tapes in a Set associated with at least one Tape Group. Tape(s)
may be externalized or write disabled.

• remainSizeOnTapes

The sum of the remaining size of tapes (in gigabytes) that are online, in a Set associ-
ated with at least one Tape Group in an ACS where DIVA has a drive that is writable,
and the remaining size on disks accepting permanent storage. Only disks that are
currently visible are used in the calculation.
Remaining_Size_of_Online_Tapes + Remaining_Size_of_Disks_Ac-
cepting_Permanent_Storage

• totalSizeOnTapes

The sum of the total size of all tapes (in gigabytes) in a Set associated with at least
one Tape Group available for DIVA, and of the total size of all disks accepting stor-
age. Only disks that are currently visible are used in the calculation.
Total_Size_of_all_Available_Tapes + Total_Size_of_all_Disks_Ac-
cepting_Storage

• capSize

The number of slots in the default CAP.

• pendingRequests

The number of pending jobs.

• currentRequests

The number of current jobs.

• numOfAvailableActors

The number of currently running Actors.

• numOfAvailableDrives

The number of drives currently in online status.

• numOfAvailableDisks

The number of disks currently in online status.

• siteName

The name of the main site as entered in the Web App.

• siteIpAddress

The Manager IP Address.

• sitePort

The port number where the Manager is listening.

• firstUsedRequestId

The first job ID used by the current Manager session. This value is -1 if no jobs were
processed.

C++ API Programming Guide
Jobs and Commands

84

DIVA Application Programming Guide

• lastUsedRequestId

The last job ID used by the current Manager session. This value is -1 if no jobs were
processed.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_getArrayList
The purpose of this function is to provide a list of arrays and disks associated with the
arrays in the DIVA system. It also returns arrays without any disks associated with them.
In DIVA 9.0 and later the Source Media Priority and storage options are reported in the
returned data from this call.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getArrayList (
IN string options;
OUT vector<DIVA_ARRAY_DESC> *&arraysInfo
);

• arraysInfo

A pointer to a list of DIVA_ARRAY_DESC structures.
#ifndef WIN32
typedef long long __int64;
#endif

C++ API Programming Guide
Jobs and Commands

85

DIVA Application Programming Guide

typedef enum {
DIVA_CLOUD_STORAGECLASS_NONE=0
 DIVA_CLOUD_STORAGECLASS_ARCHIVE,
 DIVA_CLOUD_STORAGECLASS_STANDARD
} DIVA_CLOUD_STORAGECLASS;

class DIVA_ARRAY_DESC {
public:
DIVA_STRING arrayDesc;
DIVA_STRING arrayName;
int number_Of_Disk;
int mediaFormatId;
DIVA_CLOUD_STORAGECLASS cloudStorageClass; (deprecated)
vector<DIVA_DISK_ARRAY> *arrayDiskList;
DIVA_STRING storageOptions
};

typedef enum {
DIVA_DISK_STATUS_UNKNOWN = 0,
DIVA_DISK_STATUS_ONLINE,
DIVA_DISK_STATUS_OFFLINE,
DIVA_DISK_STATUS_NOT_VISIBLE
} DIVA_DISK_STATUS;

class DIVA_DISK_ARRAY {
public:
__int64 disk_CurrentRemainingSize;
bool disk_isWritable;
__int64 disk_maxThroughput;
__int64 disk_minFreeSpace;
DIVA_STRING disk_name;
DIVA_STRING disk_site;
DIVA_DISK_STATUS disk_status;
__int64 disk_total_size;
__int64 consumedSize;
DIVA_STRING disk_array_name;
};

• arrayDesc

The description of the array.

• arrayName

The name of the array.

• numberOfDisk

The number of disks in the array.

• mediaFormatId

The format of the data on disks in this array. The value can be DIVA_MEDIA_FOR-
MAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_AXF_10.

C++ API Programming Guide
Jobs and Commands

86

DIVA Application Programming Guide

• storageOptions

The Storage Class and Storage Location. Formatted as follows:
– oracle_storage_class=[NONE|ARCHIVE|STANDARD]

– storage_location=[LOCAL|OPC|OCI]

• arrayDiskList

A list of the disks in an array.

• DIVA_DISK_STATUS_UNKNOWN = 0

The disk status is unknown.

• DIVA_DISK_STATUS_ONLINE

The disk status is online.

• DIVA_DISK_STATUS_OFFLINE

The disk status is offline.

• DIVA_DISK_STATUS_NOT_VISIBLE

The disk status is not visible.

• disk_CurrentRemainingSize

The current remaining disk size.

• disk_consumedSize

The current consumed size on disk in kilobytes. Useful for unlimited cloud disks to
determine the space consumed on the disk.

• disk_isWritable

This flag checks to see whether the disk is writable.

• disk_maxThroughput

The maximum throughput of a disk.

• disk_minFreeSpace

The minimum free space available on a disk.

• disk_name

The name of the disk.

• disk_site

The name of the site where the disk is located.

• disk_status

The current disk status.

• disk_total_size

The total size of the disk.

• disk_array_name

The name of the array containing the disk.

C++ API Programming Guide
Jobs and Commands

87

DIVA Application Programming Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_getFinishedRequestList
Get all of the finished jobs starting from the specified number of seconds before the
present. Finished jobs are jobs that have completed normally or were terminated.

Use this function as follows:

If the list of jobs to be processed is greater than the batch size, make successive calls to
this function. The first time the function is called, set initialTime to the desired number
of seconds earlier, where the list is to start. The maximum is three days. For successive
calls set initialTime to zero and set the uniqueId to the value returned by the previous
call. The returned list will be empty after all of the jobs have been returned.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getFinishedRequestList (
IN int batchSize,
IN int initialTime,
IN DIVA_STRING uniqueId,
OUT DIVA_FINISHED_REQUEST_INFO *pFinishedRequestInfo
);

• batchSize

The maximum size of the returned list of objects. This must be set to a value no
greater than 1000; the recommended setting is 500. This is only a suggestion and
may be overridden by the underlying functionality. This parameter should not be
used to guarantee that the list will be a certain size.

C++ API Programming Guide
Jobs and Commands

88

DIVA Application Programming Guide

• initialTime

The first time the function is called this value defines how far back in time to go to
look for finished jobs. Jobs that have finished between this time and the present
will be retrieved. The valid range for this parameter is 1 to 259200 (three days). If the
number of jobs to be returned is greater than the batch size, the call is repeated. For
these calls this parameter should be set to zero (0).

• uniqueId

The first time the function is called this value must be set to an empty string
(_T(“”)). Do not set this parameter to NULL. If the number of job to be returned is
greater than the batch size, the call is repeated. For these calls this value should be
set to the uniqueId as found in DIVA_FINISHED_REQUEST_INFO that was
returned by the previous call.

• pFinishedRequestInfo

This is a pointer to the returned data. See the description of DIVA_FINISHED_RE-
QUEST_INFO later in this section. It is the user's responsibility to allocate and delete
instances of this class.

class DIVA_FINISHED_REQUEST_INFO {
public:
DIVA_STRING uniqueId;
vector<DIVA_REQUEST_INFO> *pRequestList;
};

• uniqueId

After the first (and any subsequent) call, the API libraries update this variable with
the current position in the search. Use this value as the input parameter to subse-
quent calls.

• pRequestList

This is a pointer to the returned data. See the description of DIVA_REQUEST_INFO
under the description of DIVA_getRequestInfo.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

C++ API Programming Guide
Jobs and Commands

89

DIVA Application Programming Guide

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_getFilesAndFolders
Retrieves the names of the files and folders for the specified object from DIVA. This
function is included to support complex objects, but is valid for any object.

Set the startIndex to zero to get all of the file and folder names for an object. A list of
names of the specified size is returned. Then set startIndex to the value of
nextStartIndex and again make the function call. Continue this process until the return
value equals DIVA_WARN_NO_MORE_OBJECTS.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getFilesAndFolders (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN int listType,
IN int startIndex,
IN int batchSize,
IN DIVA String options,
OUT DIVA_FILES_AND_FOLDERS *pFilesAndFolders
);

• objectName

The name of the object to be queried.

• objectCategory

The Collection assigned to the object when it was archived.

• listType

Specifies what the returned list will include. See the definition of DIVA_FILE_-
FOLDER_LIST_TYPE later in this section.

• startIndex

The position in the list to start this iteration. Set at one (1) to start at the beginning.
Values less than one are not valid. Set startIndex equal to nextStartIndex as
returned in DIVA_FILES_AND_FOLDERS for all subsequent calls.

C++ API Programming Guide
Jobs and Commands

90

DIVA Application Programming Guide

• batchSize

The maximum size of the returned list of objects. This must be set to a value no
greater than 1000; the recommended setting is 500. This is only a suggestion and
may be overridden by the underlying functionality. This parameter should not be
used to guarantee that the list will be a certain size.

• options

Field for optional getFilesAndFolders parameters.

• pFilesAndFolders

This is a pointer to the returned data. See the description of DIVA_FILES_AND_-
FOLDERS later in this section. It is the responsibility of the user to allocate and
delete instances of this class.

Typedef enum {
 DIVA_LIST_TYPE_FILES_ONLY = 0,
 DIVA_LIST_TYPE_FOLDERS_ONLY = 1,
 DIVA_LIST_TYPE_FILES_AND_FOLDERS = 2
} DIVA_FILE_FOLDER_LIST_TYPE;

• DIVA_LIST_TYPE_FILES_ONLY

This function will return files and symbolic links.

• DIVA_LIST_TYPE_FOLDERS_ONLY

This function will return folders only.

• DIVA_LIST_TYPE_FILES_AND_FOLDERS

This function will return files and folders and symbolic links.
class DIVA_FILES_AND_FOLDERS {
public:
DIVA_OBJECT_SUMMARY objectSummary;
bool isComplex;
int nextStartIndex;
DIVA String siteName;
vector<DIVA_FILE_FOLDER_INFO> *pFileFolderList;
};

• objectSummary

The ID of the object. See the description later in this section.

• isComplex

This is true when the object is a complex object.

• nextStartIndex

After the first and any subsequent call, the API libraries update this variable with
the current position in the search. Use this value as the input parameter for subse-
quent calls.

• siteName

This contains the site name of the Manager that satisfied the job.

C++ API Programming Guide
Jobs and Commands

91

DIVA Application Programming Guide

• pFileFolderList

This is a pointer to the list of files and folders. See the description of DIVA_FILE_-
FOLDER_INFO later in this section.

class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCategory;
};

• objectName

This is the name of the object.

• objectCategory

This is the Collection of the object.
class DIVA_FILE_FOLDER_INFO {
public:
DIVA_STRING fileOrFolderName;
bool isDirectory;
bool isSymbolicLink;
__int64 sizeBytes;
int fileId;
int totalNumFilesFolders;
__int64 totalSizeFilesFolders;
vector<DIVA_CHECKSUM_INFO> pChecksumInfoList;
};

• fileOrFolderName

The name of the file or folder.

• isDirectory

This is true if the component is a directory.

• isSymbolicLink

This is true if the component is a symbolic link.

• sizeBytes

The size of the file in bytes. This is valid only for files.

• fileId

This is a unique ID for each file created by DIVA as part of the processing of this
command.

• totalNumFilesFolders

The number of files and sub folders. This is valid only for folders in a complex
object.

• totalSizeFilesFolders

The total size of all files, including files in sub folders. This is valid only for folders in
a complex object.

C++ API Programming Guide
Jobs and Commands

92

DIVA Application Programming Guide

• pChecksumInfoList

This is a pointer to a list of checksums for a file. Directories will not contain check-
sums. It is also possible that some files in the archive will not contain checksum
information. See the description later in this section.

class DIVA_CHECKSUM_INFO {
public:
DIVA_STRING checksumType;
DIVA_STRING checksumValue;
bool isGenuine;
};

• checksumType

The type of checksum (MD5, SHA1, and so on).

• checksumValue

The value of the checksum in hexadecimal string format.

• isGenuine

This is true if this checksum was provided at the time of archiving and verified as a
Genuine Checksum.

Return Values
The API includes the following return values for this call:

• The file list contains empty files for non-complex objects.

• The folders list contains all folders in a non-complex object.

• Both the Folders Only and Files and Folders options are available for use with non-
complex objects.

One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

C++ API Programming Guide
Jobs and Commands

93

DIVA Application Programming Guide

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_WARN_NO_MORE_OBJECTS

The end of the list was reached during the call.

DIVA_getGroupsList
Returns the description of all Tape Groups. In DIVA 9.0 and later the Source Media
Priority is reported in the returned data from this call.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getGroupsList (
OUT vector<DIVA_GROUP_DESC> *&groups
);

• groups

This is a pointer to a list of DIVA_GROUP_DESC structures.
class DIVA_GROUP_DESC {
public:
string group_name;
string group_desc;
int mediaFormatId;
};

• group_name

The configured name of the tape group.

• group_desc

The description of the tape group.

• mediaFormatId

The format of the tapes added to this Tape Group. The value can be DIVA_MEDIA_-
FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_AXF_10.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

C++ API Programming Guide
Jobs and Commands

94

DIVA Application Programming Guide

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

See also DIVA_getObjectInfo.

DIVA_getObjectDetailsList
The DIVA_getObjectDetailsList is an API call to retrieve object information from
the database. Only the latest state of the object is returned. Objects may be repeated
across batches if the object is modified multiple times as the call advances (in time)
from a user-specified time across objects in the database.

• The created-since call retrieves all objects created since a certain time.

• The deleted-since call retrieves all objects deleted since a certain time.

• If starting from a user-specified time of zero, the modified-since call retrieves all
objects created since a certain time, and returns the state of the database from a
time of zero.

• If starting from a user-specified time greater than zero, the call returns all objects
created and deleted since a certain time, and all objects with newly created and (or)
deleted instances.

In DIVA 9.0 and later storage options (at the instance level) are reported in the returned
data from this call.

The listPosition vector returned by a GetObjectDetailsList call must be passed in
to a subsequent call. Its content must not be altered by the user of the call.

Different detail levels can be specified (see the following Level of Detail Setting
information). Level 0 will be the fastest, while Level 3 will return all possible details.
Only the highest level of detail is supported. Using a lower level of detail will still return
all information for objects.

The output can be structured using the DIVA_OBJECTS_LIST option, or through the
DIVA_TAPE_INFO_LIST option. The output structure type is configured by setting the
pListType parameter of the call.

The API client application should use the DIVA_OBJECTS_LIST setting in the following
cases:

• To retrieve a list of objects instances added to DIVA.

C++ API Programming Guide
Jobs and Commands

95

DIVA Application Programming Guide

• To retrieve a list of objects instances deleted from DIVA.

• To retrieve a combined list of all changes in the DIVA object database (adding and
deleting objects, adding and deleting instances)

• To continuously monitor the DIVA system to retrieve events of adding and deleting
objects, and adding and deleting instances.

The API client application should use the DIVA_TAPE_INFO_LIST setting to retrieve a
list of tape instances for any instances added, deleted, repacked, ejected, or inserted.

Note: The DIVA_TAPE_INFO_LIST will not return any results for deleted instances if
all objects are deleted.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getObjectDetailsList (
IN bool fFirstTime,
IN time_t *initialTime,
IN int pListType,
IN int pObjectsListType,
IN int pMaxListSize,
IN DIVA_STRING pObjectName,
IN DIVA_STRING pObjectCategory,
IN DIVA_STRING pMediaName,
DIVA_LEVEL_OF_DETAIL pLevelOfDetail,
IN vector<DIVA_STRING> listPosition,
OUT vector<DIVA_OBJECT_DETAILS_LIST> *&pObjectDetailsList
);

• fFirstTime

The first time this function is called this parameter must be set to true. Every subse-
quent call should be set to false and listPosition must be copied from the
listPosition value returned by the previous call to DIVA_GetObjectDe-
tailsList.

• intialTime

The start time of the list. Data is collected and returned corresponding to this time
and later. To retrieve all items in the database, use zero as the start time value.

• pListType

One of the codes defined by the enumeration DIVA_LIST_TYPE.

• pObjectsListType

One of the codes defined by the enumeration DIVA_OBJECTS_LIST_TYPE.

To retrieve all objects created, deleted, or modified since a certain time, set this to
DIVA_OBJECTS_CREATED_SINCE, DIVA_OBJECTS_DELETED_SINCE, or DIVA_-
OBJECTS_MODIFIED_SINCE, respectively.

To retrieve tape related information for all objects that have been created, deleted,
repacked, ejected, and (or) inserted since a certain time, set this parameter to

C++ API Programming Guide
Jobs and Commands

96

DIVA Application Programming Guide

DIVA_INSTANCE_CREATED, DIVA_INSTANCE_DELETED, DIVA_INSTANCE_RE-
PACKED, DIVA_INSTANCE_EJECTED, DIVA_INSTANCE_INSERTED, respectively.

To retrieve any combination of the above, use the pipe operator. For example, to
retrieve tape information for objects with tape instances that have been created
and repacked since a certain time, use DIVA_INSTANCE_CREATED | DIVA_IN-
STANCE_REPACKED.

• pMaxListSize

The maximum size of the returned list of objects. This must be set to a value no
greater than 1000; the recommended setting is 500. This is only a suggestion and
may be overridden by the underlying functionality. This parameter should not be
used to guarantee that the list will be a certain size.

• pObjectCategory

Filter the returned list of objects based on the provided object Collection. The
asterisk wildcard can be used (for example, *video).

• pMediaName

Filter the returned list of objects based on the provided media name. The asterisk
wildcard can be used (for example, soap*).

• pLevelOfDetail

One of the codes defined by the enumeration DIVA_LEVEL_OF_DETAIL. Filtering
by Object Name, Collection, and Tape Group (media name) is performed at all levels
of detail.

The DIVA_OBJECTS_CREATED_SINCE and DIVA_OBJECTS_MODIFIED_SINCE
options work with all levels of detail.

The DIVA_OBJECTS_DELETED_SINCE option only works with the DIVA_OBJECT-
NAME_AND_CATEGORY level of detail.

The DIVA_TAPE_INFO_LIST only works with the DIVA_OBJECTNAME_AND_CATE-
GORY and DIVA_INSTANCE level of detail.

• listPosition

A vector of DIVA_STRING type. The elements of this list are for internal use only
and do not need to be extracted by the user.

When pFirstTime is true, a new empty list must be constructed and included.

When pFirstTime is false, listPosition must be updated with the listPosi-
tion attribute of pObjectDetailsList since this attribute points to the last
object retrieved by the last call of DIVA_getObjectDetailsList.

C++ API Programming Guide
Jobs and Commands

97

DIVA Application Programming Guide

• pObjectDetailsList

This is a pointer to the DIVA_OBJECT_DETAILS_LIST class. This is the output
parameter that will contain the response to the call.

Use the listPosition parameter from this response as the listPosition argument in
subsequent calls to GetObjectDetailsList.

For pListType = DIVA_OBJECTS_LIST, all of the object and (or) instance infor-
mation is stored in the objectInfo attribute.

For pListType = DIVA_TAPE_INFO_LIST, all object and tape information is
stored in the objectTapeInfo attribute.

typedef enum {

DIVA_OBJECTNAME_AND_Category = 0,
DIVA_MISC = 1,
DIVA_COMPONENT = 2,
DIVA_INSTANCE = 3
} DIVA_LEVEL_OF_DETAIL;

• DIVA_OBJECTNAME_AND_CATEGORY(0)

The getObjectDetailsList function will only return the object name and Col-
lection.

• DIVA_MISC (1)

The getObjectDetailsList function will return the comments, archive date,
name and path on the source, and all data returned with the DIVA_OBJECTNAM-
E_AND_CATEGORY level of detail.

• DIVA_COMPONENT (2)

The getObjectDetailsList function will return the size of the object, list of
components value, and all data returned with the DIVA_MISC level of details.

• DIVA_INSTANCE (3)

The getObjectDetailsList function will return all instance information, repack
state, related active job information data, and all data returned with the DIVA_-
COMPONENT level of detail.

typedef enum {

DIVA_OBJECTS_LIST = 1,
DIVA_TAPE_INFO_LIST = 2
} DIVA_LIST_TYPE;

DIVA_OBJECTS_LIST_TYPE is defined as follows:
typedef enum {

DIVA_OBJECTS_CREATED_SINCE = 0x0001,
DIVA_OBJECTS_DELETED_SINCE = 0x0002,
DIVA_OBJECTS_MODIFIED_SINCE = 0x0003,
DIVA_INSTANCE_NONE = 0x0000,
DIVA_INSTANCE_DELETED = 0x0020,
DIVA_INSTANCE_REPACKED = 0x0040,
DIVA_INSTANCE_EJECTED = 0x0080,
DIVA_INSTANCE_INSERTED = 0x0100

C++ API Programming Guide
Jobs and Commands

98

DIVA Application Programming Guide

} DIVA_OBJECTS_LIST_TYPE;

class DIVA_OBJECT_DETAILS_LIST {
public:
int listType;
DIVA_STRING siteID;
vector<DIVA_STRING> *listPosition;
vector<DIVA_OBJECT_INFO> *objectInfo;
vector<DIVA_OBJECT_TAPE_INFO> *objectTapeInfo;
};

• listType

One of the codes defined by the enumeration DIVA_LIST_TYPE.

• siteId

The DIVA system name as configured in manager.conf.

• listPosition

After the first and any subsequent call, the API libraries update this variable with
the current position in the search. This object must be provided as the input param-
eter to any subsequent calls.

• objectInfo

This is a pointer to a DIVA_OBJECT_INFO structure. The structure should be allo-
cated and deleted by the caller. The structure contains information about the
object details, such as the list of components, tape instances, and other properties
described in API call getObjectInfo.

• objectTapeInfo

This is a pointer to a list of DIVA_OBJECT_TAPE_INFO structures. The structure
should be allocated and deleted by the caller. The structure contains information
about the tapes containing instances of the object and other properties described
in API call getObjectTapeInfo.

class DIVA_OBJECT_INFO {
public:
DIVA_OBJECT_SUMMARY objectSummary;
DIVA_STRING uuid;
int lockStatus;
__int64 objectSize;
__int64 objectSizeBytes;
vector<string> *filesList;
string objectComments;
time_t archivingDate;
bool isInserted;
vector<DIVA_TAPE_INSTANCE_DESC> *tapeInstances;
vector<DIVA_ACTOR_INSTANCE_DESC> *actorInstances;
string objectSource;
string rootDirectory;
vector<int> *relatedRequests;
bool toBeRepacked;
int modifiedOrDeleted;
bool isComplex;
int nbFilesInComplexComponent;
int nbFoldersInComplexComponent;

C++ API Programming Guide
Jobs and Commands

99

DIVA Application Programming Guide

};

• objectSummary

The object name and Collection.

Note: Object Names cannot begin with a dollar sign ($).

• UUID

Universally Unique Identifier to uniquely identify each object created in DIVA across
all Telestream customer sites. This does not include objects created using Copy As
jobs. An object created through a Copy As job will contain the same UUID as that of
the Source Server object.

• lockStatus

This is the locking status of the object. Objects in the archive can be locked. When
an object is locked it cannot be restored or copied to a new name. This feature pre-
vents the use of an object that has an expired copyright, and so on. The object is
unlocked when this value is zero.

• objectSize

This is the object size in kilobytes.

• objectSizeBytes

This is the object size in bytes.

• filesList

This is a list of the files in the object. A single wrapper file name is returned for com-
plex objects.

• objectComments

This is the comments saved when the object was archived.

• archivingDate

Then number of seconds since January 1, 1970.

• isInserted

This is true if at least one instance of this object is either on a tape that is currently
inserted in the Managed Storage, or a disk that is online.

• tapeInstances

This is a list of object instances saved to tape.

• actorInstances

This is a list of object instances saved to disk.

• objectSource

The Source Server system used to archive the object.

• rootDirectory

The root directory containing the object files on the objectsource.

C++ API Programming Guide
Jobs and Commands

100

DIVA Application Programming Guide

• relatedRequests

This is non-terminated jobs.

• toBeRepacked

This is false unless all instances are going to be repacked.

• modifiedOrDeleted

One of DIVA_MODIFIED_OR_DELETED as follows:

– UNDEFINED—The levelOfDetail does not equal DIVA_INSTANCE.

– DIVA_CREATED_OR_MODIFIED—The object was created, or an instance was
either added or removed.

– DIVA_DELETED—The object was removed.

• isComplex

This is true if this is a complex object.

• nbFilesInComplexComponent

This is the number of files in the object. This is used only for complex objects. The
value is zero for non-complex objects.

• nbFoldersInComplexComponent

This is the number of folders in the object. This is used only for complex objects.
The value is zero for non-complex objects.

class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCategory;
};

• objectName

This is the object name.

Note: Object Names cannot begin with a dollar sign ($).

• objectCategory

This is the object Collection.
class DIVA_TAPE_INSTANCE_DESC {
public:
int instanceID;
string groupName;
vector<DIVA_TAPE_DESC> *tapeDesc;
bool isInserted,
DIVA_REQUIRE_STATUS reqStatus;
};

• instanceId

The numeric instance identifier.

• groupName

The name of the Tape Group this tape is assigned to.

C++ API Programming Guide
Jobs and Commands

101

DIVA Application Programming Guide

• tapeDesc

Additional information about this tape.

• isInserted

This is true if at least one instance of this object is either on a tape that is currently
inserted in the Managed Storage, or a disk that is online.

• reqStatus

Determines if the instance is Required or Released.

– DIVA_REQUIRED—The instance is requested to be inserted into the Managed
Storage.

– DIVA_RELEASED—There is no need to have this instance present in the
Managed Storage.

class DIVA_TAPE_DESC {
public:
string vsn;
bool isInserted;
string externalizationComment;
bool isGoingToBeRepacked;
int mediaFormatId;
};

• vsn

The volume serial number (barcode).

• isInserted

This is true if at least one instance of this object is either on a tape that is currently
inserted in the Managed Storage or a disk that is online.

• externalizedComment

Comment saved when the tape was exported.

• isGoingToBeRepacked

This is false unless all instances are going to be repacked.

• mediaFormatId

The format of the data on to be used. The value can be DIVA_MEDIA_FORMAT_DE-
FAULT, DIVA_MEDIA_FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_ME-
DIA_FORMAT_AXF_10. This is only used when the listType is Tape.

typedef enum {
DIVA_CLOUD_STORAGECLASS_NONE=0
 DIVA_CLOUD_STORAGECLASS_ARCHIVE,
 DIVA_CLOUD_STORAGECLASS_STANDARD
} DIVA_CLOUD_STORAGECLASS;

class DIVA_ACTOR_INSTANCE_DESC {
public:
int instanceID;
string actor;
DIVA_CLOUD_STORAGECLASS cloudStorageClass; (depreciated)
DIVA_STRING storageOptions;
};

C++ API Programming Guide
Jobs and Commands

102

DIVA Application Programming Guide

• instanceID

The numeric ID of the instance.

• actor

This field reports the name of the disk array where the instance is stored instead of
the Actor name.

typedef enum {
DIVA_REQUIRED = 0,
DIVA_RELEASED
} DIVA_REQUIRE_STATUS;

typedef enum {
DIVA_UNDEFINED = 0,
DIVA_CREATED_OR_MODIFIED,
DIVA_DELETED
} DIVA_MODIFIED_OR_DELETED;

Return Values
The file list of each object in the objects list now contains empty files (that is, files of size
0 bytes). Client applications developed against API releases before release 7.5 will
receive empty files in the file list that accompanies a Details List message. Depending
on the input parameters, the DIVA_getObjectDetailsList function will return
values as described in the following table.

List Type Object List Type
Supported Detail
Level Return Value

DIVA_OBJECTS_LIST DIVA_OBJECTS_CREATED_SINCE All List objects that have
been created since a
specified time.

DIVA_OBJECTS_LIST DIVA_OBJECTS_DELETED_SINCE Only
DIVA_OBJECTNAME_AN
D_CATEGORY

List objects that have
been deleted since a
specified time.

DIVA_OBJECTS_LIST DIVA_OBJECTS_MODIFIED_SINCE Only DIVA_INSTANCE List objects that have
been created/deleted
since a certain time,
plus objects with new
or deleted instances.
If the list of instances is
empty, objects were
deleted.
If the list of instances is
not empty, objects
were created or
updated.

C++ API Programming Guide
Jobs and Commands

103

DIVA Application Programming Guide

Use with DIVA Connect
All filters are applied at an object level as follows:

• If objects satisfying certain filter constraints are requested, those constraints are
applied to the object and not to individual instances of an object.

• If an Object Name and Collection filter are specified, the list will be filtered to con-
tain only objects satisfying the specified object name and collection.

Media name is defined at an instance level, not at an object level. A media name filter
will only allow objects with at least one instance satisfying the job media name filter.

Note: If an instance of an object is created or deleted, and all modified objects with a
particular media name are requested, the object will be returned if and only if
any instance of the object satisfies the media name filter.

Example:

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_NONE (0x0000) Only
DIVA_OBJECTNAME_AN
D_CATEGORY and
DIVA_INSTANCE level.

List objects and tape
information for all tape
instances (no filter).

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_CREATED
(0x0010)

Only
DIVA_OBJECTNAME_AN
D_CATEGORY and
DIVA_INSTANCE level.

List objects and tape
information for all tape
instances created since
a specified time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_DELETED
(0x0020)

Only
DIVA_OBJECTNAME_AN
D_CATEGORY and
DIVA_INSTANCE level.

List objects and tape
information for all tape
instances deleted since
a specified time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_REPACKED
(0x0040)

Only
DIVA_OBJECTNAME_AN
D_CATEGORY and
DIVA_INSTANCE level.

List objects and tape
information for all tape
instances repacked
since a specified time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_EJECTED
(0x0080)

Only
DIVA_OBJECTNAME_AN
D_CATEGORY and
DIVA_INSTANCE level.

List objects and tape
information for all tape
instances ejected since
a specified time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_INSERTED
(0x0100)

Only
DIVA_OBJECTNAME_AN
D_CATEGORY and
DIVA_INSTANCE level.

List objects and tape
information for all tape
instances inserted
since a specified time.

List Type Object List Type
Supported Detail
Level Return Value

C++ API Programming Guide
Jobs and Commands

104

DIVA Application Programming Guide

A new instance Object-A was added at time 101 with the media name CAR. Object-A
has a total of two instances. One instance has the Media Name TRUCK and the other
has the Media Name CAR.

An instance of Object-B was removed at time 101 with the Media Name CAR. Object-B
has only one instance.

A new instance of Object-C was added at time 99 with the Media Name TRAIN. Object-
C has a total of two instances. One instance has the Media Name TRAIN and the other
has the Media Name HANG GLIDE.

A user executes a getObjectDetailsList call with MODIFIED SINCE TIME 100
and MEDIA NAME FILTER = T*.

The only object that was modified since time 100, and has at least one instance with a
Media Name of T is Object-A. Therefore, the result is that the list returned by the
getObjectDetailsList call contains only Object-A.

Use and Recommended Practices
Telestream recommends that the API client application adhere to the following
sequence of actions:

1. Create a variable of DIVA_OBJECT_DETAILS_LIST type to store the object
information returned by the call.

2. Create a variable of vector <DIVA_STRING> type to serve as the listPosition object.
This will be used as the listPosition argument to DIVA_GetObjectDetailsList.

3. Create a variable of time_t type and set to the time at which the list is to start. Set
this to zero to include all objects in the database.

4. Create a variable of Boolean type and set it to true to indicate that this is the first
call in a sequence of calls.

5. Create a variables of Integer type to hold the listType and objectsListType to
specify the type of call.

Example: Use DIVA_OBJECTS_LIST and DIVA_OBJECTS_MODIFIED_SINCE to
indicate that object information for modified objects is being requested.

6. Create a variable of Integer type to hold the suggested number of objects to be
returned by the call.

7. Create list filtering variables of DIVA_CHAR[] type to hold the Object Name,
Collection and Media filters.

8. Create a variable of Integer type to hold the level of detail yto be returned.

9. Execute DIVA_GetObjectDetailsList with the variables previously mentioned.

10. Use the data stored in the variable from Step 1 as needed by the application.

11. Copy the listPosition attribute of the call's output created in Step 1 into the
listPosition variable created in Step 2.

12. Repeat steps 8, 9, and 10 for until monitoring DIVA is no longer needed.

13. All variables must be deallocated after exiting the loop.

C++ API Programming Guide
Jobs and Commands

105

DIVA Application Programming Guide

Multiple simultaneous calls to DIVA_getObjectDetailsList are supported.
However, this call places a heavy demand on the database. Therefore simultaneous and
(or) frequent calls to this function should be avoided.

Continuous monitoring of DIVA requires a procedure similar to the one defined in the
section Recommended Practices for Continuous Updates Notification Design Pattern (No
Media Filter).

Duplication of objects can occur across different return portions. It is important to
handle these cases by examining the data returned by the call. For a MODIFIED_SINCE
call, the instances of the duplicate object returned by successive calls must be
compared to identify whether new information about the object is available and
update the local repository accordingly.

An empty list may be returned as a valid result. This indicates that there were no
changes to the system after the time specified in the last call. It is important to continue
querying DIVA with the DIVA_getObjectDetailsList call using the ID from the
previous call. However, the call frequency must be reduced after an empty list is
received. This reduces the load on the database.

The same application can use the DIVA_getObjectDetailsList function effectively
for both the initial database synchronization (if the client application maintains a
database) and later use it for continuous monitoring after the database is updated.

During the initial database synchronization phase, it is necessary for the application to
make frequent sequential calls to synchronize the local database with the database.
The application must call DIVA_getObjectDetailsList, wait for a response, and
then repeat the process.

After the synchronization phase, it is necessary for the application to go into the
continuous monitoring phase, where it must make periodic calls to update the system
with the latest object information. Telestream recommends a call interval of once every
several minutes. Continuous, frequent execution of this call can heavily impact the
database and degrade system performance.

The amount of data retrieved by the CREATED_SINCE and MODIFIED_SINCE call is
substantial (object, instance, and component data for each object). Therefore,
Telestream recommends that most applications use 500 as the maximum list size
setting.

Recommended Practices for Continuous Updates Notification
Design Pattern (No Media Filter)
The continuous updates notification design pattern is used in multiple applications,
and is important when using the API. The client application can use the internal
database to continuously update the local database information with changes in the
database. Following the design pattern helps develop the performance-optimized
updates notification workflow.

The application must submit the call with the objectListType set to
MODIFIED_SINCE with the level of detail required to collect instance-level information.

C++ API Programming Guide
Jobs and Commands

106

DIVA Application Programming Guide

Additionally, the First Time flag must be set true, and all necessary filter parameters
must be set (object name and Collection).

This is the process the application will follow:

1. The application receives a list of objects and a new listPosition.

2. On the next cycle, the application will execute the call using the listPosition
obtained in Step 1 and the First Time flag set to false. It is acceptable to submit
another call immediately after receiving the list if the system is being used solely for
synchronization purposes. Otherwise, it is recommended to wait for a period
between calls to allow other jobs to process.

3. Repeat Steps 1 and 2 for the course of execution to keep the internal database
synchronized with database.

4. If none of the objects in DIVA have been modified, the list will be EMPTY, which
indicates there were no updates since the last call. The application should wait for a
specific amount of time, and then retry.

The application must check the list of instances to see if the following occurred:

• The value of modifiedOrDeleted in the DIVA_OBJECT_INFO equals DELETED,
objects were deleted and the database must be updated.

• The value of modifiedOrDeleted in the DIVA_OBJECT_INFO equals CREAT-
ED_OR_MODIFIED, the object was either created or updated.

– If the object previously existed in the database, the database list of instances
must be updated.

– If the object does not exist in the database, it must be added to the database.

Note: To ensure continuous updates, the listPosition object should be preserved
throughout the course of operations.

Example:
MAIN:

CREATE LIST_POSITION VARIABLE
CREATE DETAILS_LIST VARIABLE
SET FIRST_TIME = TRUE
SET INITIAL_TIME = 0
SET LIST_TYPE = DIVA_OBJECTS_LIST
SET OBJECTS_LIST_TYPE = DIVA_OBJECTS_MODIFIED_SINCE
SET LEVEL_OF_DETAIL = DIVA_OBJECTS_MODIFIED_SINCE
SET SIZE = 500
SET OBJECT_NAME = “*”
SET CATEGORY = “*”
SET MEDIA_NAME = “*”
CALL GetObjectDetailsList(FIRST_TIME, LIST_TYPE,
OBJECTS_LIST_TYPE, LIST_POSITION, SIZE, INITIAL_TIME, OBJECT_NAME,
CATEGORY, MEDIA_NAME, LEVEL_OF_DETAIL, DETAILS_LIST)
// 1

UNIQUE_ID AND DETAILS_LIST VARIABLES WERE UPDATED BY CALL // 2

C++ API Programming Guide
Jobs and Commands

107

DIVA Application Programming Guide

CALL SYNC_OBJECTS // 6

START LOOP
 SET FIRST TIME = FALSE
 CALL GetObjectDetailsList(…) // 3
 LIST_POSITION AND DETAILS_LIST VARIABLES WERE UPDATED BY CALL
 CALL SYNC_OBJECTS // 6
END LOOP (TERMINATE AT END OF APPLICATION LIFE) // 4

SYNC_OBJECTS:
 IF (DETAILS_LIST IS NOT EMPTY) // 5
 FOR(OBJECT IN DETAILS_LIST)
 IF (OBJECT.modifiedOrDeleted EQUALS DELETED)
 DELETE OBJECT FROM DATABASE // 6a
 ELSE
 IF (OBJECT.modifiedOrDeleted EQUALS CREATED_OR_MODIFIED)
 ADD OR UPDATE OBJECT TO DATABASE // 6b
 END IF
 END IF
 END FOR
 END IF

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_WARN_NO_MORE_OBJECTS

The end of the list was reached during the call.

C++ API Programming Guide
Jobs and Commands

108

DIVA Application Programming Guide

DIVA_getObjectInfo
Returns information about a particular object in the DIVA system.

The vector<DIVA_ACTOR_INSTANCE_DESC> *actorInstances parameter is kept
unchanged for compatibility, although it is formally a vector of diskInstance and not
actorInstance.

The file list can contain empty files (that is, files of size 0 bytes). Client applications
developed against API releases before release 7.5 will also receive empty files in the file
list that accompanies an objectInfo message.

For compatibility reasons, the class DIVA_ACTOR_INSTANCE_DESC designates a disk
instance (not a Actor instance) and its string actor field now contains the array name
instead of an Actor name.

In DIVA 9.0 and later, storage options (at the instance level) are reported in the returned
data from this call.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getObjectInfo (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING options,
OUT DIVA_OBJECT_INFO *objectInfo
);

• objectName

The name of the queried object.

• objectCategory

The Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• options

Optional string attribute for specifying additional parameters to the job.

• objectInfo

Pointer to a DIVA_OBJECT_INFO structure allocated and deleted by the caller. See
DIVA_getObjectDetailsList for a description of DIVA_OBJECT_INFO.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

C++ API Programming Guide
Jobs and Commands

109

DIVA Application Programming Guide

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the DIVA Database.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the DIVA Database.

See also DIVA_archiveObject, DIVA_restoreObject, and DIVA_deleteObject.

DIVA_getPartialRestoreRequestInfo
When processing the job DIVA_PartialRestoreObject(), and the format for the
offsets were specified as timecodes, the offsets that are actually used may differ
(somewhat) from what was specified in the job. After the Partial File Restore job is
complete, this command can be used to obtain the actual offsets of the restored files.

This is a special purpose command that is valid only as follows:

• The job number to be queried must be a Partial File Restore job that has been suc-
cessfully completed.

• The format specified in the Partial File Restore job must be a timecode type. This
command is therefore not valid when the format of the job was folder-based or
DPX.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getPartialRestoreRequestInfo (
IN int requestNumber,
OUT vector <DIVA_OFFSET_SOURCE_DEST> *fileList
);

• requestNumber

Identifies the completed Partial File Restore job to be queried.

C++ API Programming Guide
Jobs and Commands

110

DIVA Application Programming Guide

• fileList

List of the files of an object that have been partially restored. Each structure con-
tains the Source Server file name, a vector of the offsets used for the transfer, and a
Destination Server file name. This vector must be similar to the vector provided to
the DIVA_partialRestoreObject() function in terms of files and offset pairs.
This function is provided to eventually detect that the actual offsets used for the
transfer to the Destination Server have been adapted based on the format of the
data to transfer.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_NO_SUCH_REQUEST

The requestNumber identifies no job.

• DIVA_ERR_INVALID_PARAMETER

The requestNumber identifies no completed partial file restore job.

See also DIVA_partialRestoreObject and DIVA_getRequestInfo.

DIVA_getRequestInfo
Obtains information about an archive, restore, delete, or repack job.

Synopsis
#include “DIVAapi.h”

C++ API Programming Guide
Jobs and Commands

111

DIVA Application Programming Guide

DIVA_STATUS DIVA_getRequestInfo (
IN int requestNumber,
OUT DIVA_REQUEST_INFO *requestInfo
);

• requestNumber

Identifies the queried job.

• requestInfo

Pointer to a DIVA_REQUEST_INFO structure. This is allocated and deleted by the
caller.

class DIVA_REQUEST_INFO {
public:
int requestNumber;
DIVA_REQUEST_TYPE requestType;
DIVA_REQUEST_TYPE
DIVA_REQUEST_STATE requestState;
DIVA_REQUEST_STATE
int progress;
DIVA_ABORTION_REASON abortionReason;
DIVA_OBJECT_SUMMARY objectSummary;
DIVA_REPACK_TAPES_INFO repackTapes;
int currentPriority;
DIVA_STRING additionalInfo;
time_t submissiondate
time_t completiondate
};

• requestNumber

The DIVA job number.

• requestType

See the definition of DIVA_REQUEST_TYPE later in this section.

• requestState

See the definition of DIVA_REQUEST_STATE later in this section.

• progress

The progress of the job from zero to one hundred percent if the requestState is
DIVA_TRANSFERRING or DIVA_MIGRATING.

• abortionReason

The reason the job was terminated if the requestState is DIVA_ABORTED, other-
wise this is zero.

• objectSummary

See the definition of DIVA_OBJECT_SUMMARY later in this section.

• repackTapes

Used if the requestType is REPACK.

• additionalInfo

See Additional_Info later in this section for use of this field.

C++ API Programming Guide
Jobs and Commands

112

DIVA Application Programming Guide

• submissionDate

The date and time the job was submitted. This is UTC time in seconds (that is, sec-
onds since January 1, 1970).

• completionDate

The date and time the job completed. This is UTC time in seconds and will be -1 if
the job is still processing.

Typedef enum {
DIVA_ARCHIVE_REQUEST = 0,
DIVA_RESTORE_REQUEST,
DIVA_DELETE_REQUEST,
DIVA_EJECT_REQUEST,
DIVA_INSERT_REQUEST,
DIVA_COPY_REQUEST,
DIVA_COPY_TO_NEW_REQUEST,
DIVA_RESTORE_INSTANCE_REQUEST,
DIVA_DELETE_INSTANCE_REQUEST,
DIVA_UNKNOW_REQUEST_TYPE,
DIVA_AUTOMATIC_REPACK_REQUEST,
DIVA_ONDEMAND_RAPACK_REQUEST,
DIVA_ASSOC_COPY_REQUEST,
DIVA_PARTIAL_RESTORE_REQUEST,
DIVA_MULTIPLE_RESTORE_REQUEST,
DIVA_TRANSCODE_ARCHIVED_REQUEST,
DIVA_EXPORT_REQUEST,
DIVA_TRANSFER_REQUEST,
DIVA_AUTOMATIC_VERIFY_TAPES_REQUEST,
DIVA_MANUAL_VERIFY_TAPES_REQUEST,
} DIVA_REQUEST_TYPE ;

typedef enum {
DIVA_PENDING = 0,
DIVA_TRANSFERRING,
DIVA_MIGRATING,
DIVA_COMPLETED,
DIVA_ABORTED,
DIVA_CANCELLED,
DIVA_UNKNOWN_STATE,
DIVA_DELETING,
DIVA_WAITING_FOR_RESOURCES,
DIVA_WAITING_FOR_OPERATOR,
DIVA_ASSIGNING_POOL,
DIVA_PARTIALLY_ABORTED,
DIVA_RUNNING
} DIVA_REQUEST_STATE;

typedef enum {
DIVA_AR_NONE = 0,
DIVA_AR_DRIVE,
DIVA_AR_TAPE,
DIVA_AR_ACTOR,
DIVA_AR_DISK,
DIVA_AR_DISK_FULL,
DIVA_AR_SOURCE_DEST,
DIVA_AR_RESOURCES,

C++ API Programming Guide
Jobs and Commands

113

DIVA Application Programming Guide

DIVA_AR_LIBRARY,
DIVA_AR_PARAMETERS,
DIVA_AR_UNKNOWN,
DIVA_AR_INTERNAL,
DIVA_AR_SOURCE_DEST2
} DIVA_ABORTION_CODE;

• DIVA_AR_NONE = 0

Job not terminated.

• DIVA_AR_DRIVE

Drive trouble

• DIVA_AR_TAPE

Tape trouble

• DIVA_AR_ACTOR

Actor trouble

• DIVA_AR_DISK

Disk trouble

• DIVA_AR_DISK_FULL

The disk is full.

• DIVA_AR_SOURCE_DEST

Server trouble

• DIVA_AR_RESOURCES

Resource attribution trouble

• DIVA_AR_LIBRARY

Managed Storage trouble

• DIVA_AR_PARAMETERS

Incorrect Job parameters

• DIVA_AR_UNKNOWN

Unknown code

• DIVA_AR_INTERNAL

Internal Manager error

• DIVA_AR_SOURCE_DEST2

This parameter has been deprecated but left intact for software compatibility.
class DIVA_ABORTION_REASON {
public:
DIVA_ABORTION_CODE code;
string description;
};

class DIVA_OBJECT_SUMMARY {
public:
string objectName;

C++ API Programming Guide
Jobs and Commands

114

DIVA Application Programming Guide

string objectCategory ;
};

• objectName

The name of the object.

• objectCategory

The Collection of the object.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The Job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_NO_SUCH_REQUEST

The requestNumber identifies no job.

• Additional_Info

The Additional_Info field of the DIVA_REQUEST_INFO structure can contain one or
more of the following depending on the job type:

MOB ID
MOB ID is a unique object identifier generated and used by AVID software. The API
provides the interface to retrieve the MOB ID for third party vendors after restoring
archived objects to Unity. The MOB ID is available in the additionalInfo field of the
DIVA_REQUEST_INFO structure. The MOB ID can be retrieved only when the object is
restored to the AVID Unity system.

Example MOB ID:

C++ API Programming Guide
Jobs and Commands

115

DIVA Application Programming Guide

060c2b34020511010104100013-000000-002e0815d552002b-060e2b347f7f-2a80

XML Document
Depending on the type of job, the XML document may be empty or it may contain any
combination of the following elements. See the schema
additionalInfoRequestInfo.xsd found in the program\Common\schemas folder
of the DIVA installation.

When the job was a Restore, N-Restore, Partial File Restore, Copy, or Copy To New the
list of media that contains the job’s object is provided as follows:
<ADDITIONAL_INFO xmls=”http://www.telestream.net/diva/
additionalInfoRequestInfo/v1.0>” <Object>
 <Name>Object Name</Name>
 <Category>Collection</Category>
 <Instances>
 <DiskInstance>
 <Id>0</Id>
 <Disk>
 <MediaName>disk name</MediaName>
 </Disk>
 </DiskInstance>
 <TapeInstance>
 <Id>1</Id>
 <Tape>
 <MediaName>barcode</MediaName>
 </Tape>
 </TapeInstance>
 </Instances>
 </Object>
</ADDITIONAL_INFO>

The following is included when the job was a Multiple Restore. If the restore is OK for
one of the Destination Servers, but NOT OK for another, the Request State Parameter is
DIVA_PARTIALLY_ABORTED and the Request Abortion Code is
DIVA_AR_SOURCE_DEST. The status of each Destination Server is as follows:
<ADDITIONAL_INFO xmls=”http://www.telestream.net/diva/
additionalInfoRequestInfo/v1.0”>”
 <request id=”12345” type=”Restore”>
 <destination name=”destination name one” success=”true”/>
 <destination name=”destination name two” success=”false”/>
 </request>
</ADDITIONAL_INFO>

The ClipID is included when the job was for a restore to a Quantel device. An ISA
gateway never overwrites clips. A new ClipID is created for every imported clip. The
ClipID of the created clip will be supplied after the Transfer Complete message as
follows:

226 Transfer Complete. [new ClipID]

The Actor captures this new ClipID after the transfer and forwards it to the Manager.
To use the API, DIVA_GetRequestInfo must be called. If the job is completed, the
new ClipID will be in the Additional Request Information field as follows:

C++ API Programming Guide
Jobs and Commands

116

DIVA Application Programming Guide

<ADDITIONAL_INFO xmls=”http://www.telestream.net/diva/
additionalInfoRequestInfo/v1.0”>”
 <ClipID>98765</ClipID>
</ADDITIONAL_INFO>

DIVA_getSourceDestinationList
This function returns a list of Source Servers present in a particular DIVA System.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS
DIVA_getSourceDestinationList (
IN string options;
OUT vector<DIVA_ACTOR_INSTANCE_DESC> *&arraysInfo
)

• arraysInfo

Pointer to a list of DIVA_SOURCE_DESTINATION_LIST structures.
#ifndef WIN32
typedef long long __int64;
#endif

typedef enum {
 DIVA_SOURCE_TYPE_UNKNOWN = 0,
 DIVA_SOURCE_TYPE_MSS,
 DIVA_SOURCE_TYPE_PDR,
 DIVA_SOURCE_TYPE_SEACHANGE_BMC,
 DIVA_SOURCE_TYPE_SEACHANGE_BML,
 DIVA_SOURCE_TYPE_SEACHANGE_FTP,
 DIVA_SOURCE_TYPE_LEITCH,
 DIVA_SOURCE_TYPE_FTP_STANDARD,
 DIVA_SOURCE_TYPE_SFTP,
 DIVA_SOURCE_TYPE_DISK,
 DIVA_SOURCE_TYPE_LOCAL,
 DIVA_SOURCE_TYPE_CIFS,
 DIVA_SOURCE_TYPE_SIMULATION,
 DIVA_SOURCE_TYPE_OMNEON,
 DIVA_SOURCE_TYPE_MEDIAGRID,
 DIVA_SOURCE_TYPE_AVID_DHM,
 DIVA_SOURCE_TYPE_AVID_DET,
 DIVA_SOURCE_TYPE_AVID_AMC,
 DIVA_SOURCE_TYPE_QUANTEL_ISA,
 DIVA_SOURCE_TYPE_QUANTEL_QCP,
 DIVA_SOURCE_TYPE_SONY_HYPER_AGENT,
 DIVA_SOURCE_TYPE_METASOURCE,
 DATA_SOURCE_TYPE_MOVIETOME,
 DATA_SOURCE_TYPE_EXPEDAT,
 DATA_SOURCE_TYPE_AVID_DIRECT
} DIVA_SOURCE_TYPE;

class DIVA_SOURCE_DESTINATION_LIST{
public:

C++ API Programming Guide
Jobs and Commands

117

DIVA Application Programming Guide

 DIVA_STRING server_Address;
 DIVA_STRING server_ConnectOption;
 int server_MaxAccess;
 int server_MaxReadAccess;
 __int64 server_MaxThroughput;
 int server_MaxWriteAccess;
 DIVA_STRING server_Name;
 DIVA_STRING server_ProductionSystem;
 DIVA_STRING server_RootPath;
 DIVA_SOURCE_TYPE server_SourceType;
};

• server_Address

The server IP address.

• server_ConnectOption

The server connection options.

• server_MaxAccess

The server maximum number of accesses.

• server_MaxReadAccess

The server maximum number of read accesses.

• server_MaxThroughput

The server maximum throughput.

• server_MaxWriteAccess

The server maximum write access.

• server_Name

The server name.

• Server_ProductionSystem

The server Network name.

• server_RootPath

The server root path.

• server_SourceType

The Source Server type.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

C++ API Programming Guide
Jobs and Commands

118

DIVA Application Programming Guide

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_getStoragePlanList
This function returns the list of Storage Plan Names that are defined in the DIVA system.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getStoragePlanList (
IN string options;
OUT vector<DIVA_STRING> *&spList
);

• spList

A pointer to a list of Storage Plan Names.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

C++ API Programming Guide
Jobs and Commands

119

DIVA Application Programming Guide

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_getTapeInfo
Returns detailed information about a given tape identified by its barcode.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getTapeInfo (
 IN DIVA_STRING barcode,
 OUT DIVA_DETAILED_TAPE_DESC *tapeInfo
);

• barcode

The barcode of the tape for which information is to be returned.

• tapeInfo

The returned information.
class DIVA_DETAILED_TAPE_DESC {
public:
string vsn;
int setID;
string group;
int typeID;
string type;
int fillingRatio;
int fragmentationRatio;
__int64 remainingSize;
__int64 totalSize;
bool isInserted;
string externalizationComment;
bool isGoingToBeRepacked;
int mediaFormatId;
};

• setID

Tape Set ID

• typeID

Tape Type ID

• type

Tape Type Name

• fillingRatio

The tape filling ratio using the equation:

last_written_block / total_block_count.

C++ API Programming Guide
Jobs and Commands

120

DIVA Application Programming Guide

• fragmentationRatio

The tape fragmentation ration using the equation:

1 - (valid_blocks_count) / (last_written_block)

Valid blocks are blocks used for archived objects not currently deleted.

• mediaFormatId

The format of the data on to be used. The value can be DIVA_MEDIA_FORMAT_DE-
FAULT, DIVA_MEDIA_FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_ME-
DIA_FORMAT_AXF_10.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_TAPE_DOESNT_EXIST

There is no tape associated with the given barcode.

DIVA_insertTape
Submits an Insert job to DIVA. This job completes when the operator has entered the
job’s tapes into the Managed Storage. The application is responsible for managing
which tapes must be entered.

Synopsis
#include “DIVAapi.h”

C++ API Programming Guide
Jobs and Commands

121

DIVA Application Programming Guide

DIVA_STATUS DIVA_insertTape (
IN bool require,
IN int priorityLevel,
OUT int *requestNumber
)

DIVA_STATUS DIVA_insertTape (
IN bool require,
IN int priorityLevel,
IN int acsId,
IN int capId,
OUT int *requestNumber
);

• require

When true, perform a DIVA_require() on every instance located on the success-
fully inserted tapes.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• acsId (second form only)

The numeric ID of the ACS where the Insert operation must be executed.

When acsId = -1 (default used for the first form), the Insert attempt will be per-
formed in all known ACSs.

• capId (second form only)

The numeric ID of the CAP from where tapes will be inserted.

When capId = -1 (default used for the first form), the Insert attempt will be per-
formed in the first available CAP in the specified ACS.

• requestNumber

The number identifying the job.

C++ API Programming Guide
Jobs and Commands

122

DIVA Application Programming Guide

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default value is 300.

See also DIVA_ejectTape.

DIVA_linkObjects
This function provides the opportunity to link together two existing objects; parent
and child. If the objects are linked for Delete, anytime the parent object is deleted, the
child will also be deleted. If objects are linked for Restore, anytime the parent object is
restored, the child will be restored to the original location from where the child object
was archived.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_linkObjects (
IN DIVA_STRING parentName,
IN DIVA_STRING parentCategory,
IN DIVA_STRING childName,
IN DIVA_STRING childCategory,

C++ API Programming Guide
Jobs and Commands

123

DIVA Application Programming Guide

IN bool cascadeDelete,
IN bool cascadeRestore
);

• parentName

The parent object name.

Note: Object Names cannot begin with a dollar sign ($).

• parentCategory

The parent object Collection.

• childName

The child object name.

Note: Object Names cannot begin with a dollar sign ($).

• childCategory

The child object Collection.

• cascadeDelete

Indicates if the child object should be deleted along with parent.

• cascadeRestore

Indicates if the child object should be restored along with parent.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_OBJECT_ALREADY_EXISTS

An object with this name and Collection already exists in the DIVA system.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_lockObject
A call to this function will lock an object. Locked objects cannot be restored.

Synopsis
#include “DIVAapi.h”

C++ API Programming Guide
Jobs and Commands

124

DIVA Application Programming Guide

DIVA_STATUS DIVA_lockObject (
IN DIVA_STRING objectName,
IN DIVA_STRING Category,
IN string options
);

• objectName

The name of the object.

• Category

The Collection assigned to the object when it was archived.

• options

Not currently in use.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

DIVA_multipleRestoreObject
Submits an object Restore job to the Manager using several Destination Servers. The
Manager chooses the appropriate instance to be restored. This function returns as soon
as the Manager accepts the job.

The job will continue even if an error occurs with one of the Destination Servers. To
check that the operation was successful the application must call the function
DIVA_getRequestInfo().

C++ API Programming Guide
Jobs and Commands

125

DIVA Application Programming Guide

If DIVA_MultipleRestoreObject() is launched with a single Destination Server, the
restore automatically converts to a DIVA_RestoreObject().

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_MultipleRestoreObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN vector <DIVA_DESTINATION_INFO> destinations,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
)
public typedef struct _DIVA_DESTINATION_INFO {
DIVA_STRING destination;
DIVA_STRING filePathRoot;
} DIVA_DESTINATION_INFO, *PDIVA_DESTINATION_INFO;

• objectName

The name of the object to be restored.

• objectCategory

The Collection assigned to the object when it was archived. This parameter can be a
null string. However this may result in an error if several objects have the same
name.

• destinations

A list of available Destination Servers (for example, a video server or browsing
server) where object files can be restored. The names must be known by the DIVA
configuration description.

A root folder where the object files will be placed is associated with each Destina-
tion Server. If null (string("")), the files will be placed in the FILES_PATH_ROOT
folder specified when archiving the object using the DIVA_archiveObject()
function.

• qualityOfService

One of the following codes:
– DIVA_QOS_DEFAULT

Restoring is performed according to the default Quality Of Service (currently
direct and cache for restore operations).

– DIVA_QOS_CACHE_ONLY

C++ API Programming Guide
Jobs and Commands

126

DIVA Application Programming Guide

Use cache restore only.
– DIVA_QOS_DIRECT_ONLY

Use direct restore only—no disk instance is created.
– DIVA_QOS_CACHE_AND_DIRECT

Use cache restore if available, or direct restore if cache restore is not available.
– DIVA_QOS_DIRECT_AND_CACHE

Use direct restore if available, or cache restore if direct restore is not available.
– DIVA_QOS_NEARLINE_ONLY

Use nearline restore only. Nearline restore will restore from a disk instance if a
disk instance exists, otherwise, it will create a disk instance and restore from the
newly created disk instance.

– DIVA_QOS_NEARLINE_AND_DIRECT

Use nearline restore if available, or direct restore if nearline restore is not avail-
able.

Additional and optional services are available. To request those services, use a
logical OR between the previously documented Quality Of Service parameter
and the following constant:
* DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

Do not overwrite existing files on the Destination Server.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

C++ API Programming Guide
Jobs and Commands

127

DIVA Application Programming Guide

• restoreOptions

Additional options that must be used for performing the transfer of data from DIVA
to the Destination Server. These options supersede any options specified in the
DIVA configuration database. Currently the possible values for restoreOptions are:

– A null string to specify no objects

– -login represents the log in required for some Source Servers. This option
obsoletes the -gateway option in earlier releases.

– -pass represents the password used with the -login option for some Source
Servers.

• requestNumber

The job number assigned to this job. This number is used for querying the status or
canceling the job.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system cannot accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default is 300.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

C++ API Programming Guide
Jobs and Commands

128

DIVA Application Programming Guide

• DIVA_ERR_OBJECT_OFFLINE

There is no inserted instance in the Managed Storage and no Actor could provide a
disk instance.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (for example, Archived, Restored, Deleted, and so on).

• DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST

The specified Server is unknown by the DIVA system.

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

See also DIVA_restoreObject, DIVA_getRequestInfo, and DIVA_copyToGroup and
DIVA_copy.

DIVA_partialRestoreObject
Submits a Partial Object Restore job to the Manager and the Manager chooses the
appropriate instance to be restored. This function returns as soon as the Manager
accepts or rejects the job. To check that the operation was successful the application
must call the DIVA_getRequestInfo() function.

If the job was not accepted (for example, if the job’s object is on media not currently
available) the job will generate an error. The media names (tape barcodes and disk
names) that contain instances of the object are included in the additionalInfo field of
the DIVA_getRequestInfo() response.

The Manager will use the instanceID field to select the instance of the object to use
for the Partial Restore operation. The Manager will choose an appropriate instance to
restore if DIVA_ANY_INSTANCE is used

DIVA supports four types of Partial Restore. The type implemented is determined by the
format parameter in the job.

The following describes each type of Partial object Restore:

• Byte Offset

The format equals DIVA_FORMAT_BYTES and provides for a range of bytes to be
extracted from a particular file in the archive. For example, bytes 1 to 2000 (the first
2000 bytes of the file) can be extracted, or byte 5000 to the end of the file (or both)
and stored to an output file such as movie.avi.

The result of the Byte Offset Partial Restore is usually not playable when applied to
video files. Actor will not apply the header, footer, and so on, according to the video
format.

To issue a Byte Offset Partial Restore, pass DIVA_FORMAT_BYTES in the format field
of the job. Create a DIVA_OFFSET_SOURCE_DEST object (in the fileList parameter

C++ API Programming Guide
Jobs and Commands

129

DIVA Application Programming Guide

of the job). In the object the sourceFile in the archive and name the output file
(destFile) must be specified. One or more DIVA_OFFSET_PAIR objects must be
inserted within the DIVA_OFFSET_SOURCE_DEST object. These offset objects con-
tain the ranges of bytes to be restored to the output file. The fileFolder and range
fields within the DIVA_OFFSET_SOURCE_DEST object do not need to be popu-
lated.

Example:

start=10000 end=50000

• Timecode

The format equals DIVA_FORMAT_VIDEO_* and provides for a selected portion of a
particular media file based on timecode. For example, 00:00:04:00 to 00:10:04:00 (a
10 minute segment starting 4 seconds in and ending at 10 minutes and 4 seconds)
can be extracted and then place that segment into an output file such as movie.avi.
The file is a smaller version of the original movie file.

The result of the Timecode Partial Restore is a valid clip when applied to video files.
Actor will apply the header, footer, and so on, according to the video format. The
job will be terminated if the Actor cannot parse the format. This type of Partial
Restore can only be applied to a valid video clip.

To issue a Timecode Partial Restore, populate the format field in the job with the
format of the file being partially restored. For example, if the file being restored is a
GXF file, specify a value of DIVA_FORMAT_VIDEO_GXF in the format field of the job.
DIVA provides an auto-detect feature that works for many types of media. Specify
DIVA_FORMAT_AUTODETECT in the format field to use auto-detect.

Create a DIVA_OFFSET_SOURCE_DEST object in the fileList parameter of the job. In
this object, add a DIVA_OFFSET_PAIR object using the offsetVector parameter
that contains the start and end time. Use DIVA_OFFSET_TC_END to indicate the
final timecode in the media file. The fileFolder and range fields within the
DIVA_OFFSET_SOURCE_DEST object do not need to be populated.

Example:

start=01:01:01:00 end=02:02:02:00

• Files and Folders

Caution: In the following process The offsetVector, sourceFile, destFile,
and range parameters should not be specified for the Files and Folders
Partial Object Restore type.

The format equals DIVA_FORMAT_FOLDER_BASED and provides for extracting
entire files from the archive, or extracting entire directories and their contents. In
DIVA multiple files and directories can be extracted in the same job. The files are
restored with the file names and path names that were specified in the archive. No
renaming option is valid in Files and Folders Partial Restore. For example, a file

C++ API Programming Guide
Jobs and Commands

130

DIVA Application Programming Guide

archived as misc/12-2012/movie.avi would be partially restored to a misc/12-2012
subdirectory with the name movie.avi.

When a folder is specified in a Files and Folders Partial Restore, the folder and all
files within that folder are restored. Each directory to be restored can have the -r
option to recursively restore all folders nested within the target folder.

To issue a Files and Folders Partial Restore, the format field in the job must be popu-
lated with the DIVA_FORMAT_FOLDER_BASED value. Create a DIVA_OFFSET_-
SOURCE_DEST object in the fileList parameter of the job. In the object add a
DIVA_FILE_FOLDER object in the fileFolder parameter containing the name of the
file or folder to be restored, and any options (such as the recursive option) for that
directory.

• DPX

The format equals DIVA_FORMAT_DPX and provides for extracting a range of DPX
files from the archive. In this type of restore, the entire object is viewed as a single
media item. One DPX file represents one frame of media. Only .dpx, .tif, and .tiff files
in the archive are considered frames for the purposes of this command.

The first .dpx, .tif, or .tiff file in the archived object is considered Frame 1, the second
.dpx in the archive is Frame 2, and so on.

For example, if frame 10 through frame 15 are extracted using DPX Partial Restore,
it would restore the 10th .dpx file that appears in the archive, through (and includ-
ing) the 15th .dpx file, resulting in six total files. Any other files (such as .wav files)
are skipped by DPX Partial Restore.

Special frame numbers 0 and -1 may be used to refer to the first and last frame
respectively. Frame 0 is valid as the start of a frame range and Frame -1 is valid as
the end of a range.

Valid frames and ranges are as follows:

– Frame 0 = first frame

– Frame 1 = the first frame in the sequence.

– Frame n = the nth frame in the sequence.

– Frame -1 = last frame

Specifying frame 0 as the last frame is invalid.

Specifying Frame 0 to 0 is invalid and will not return the first frame as intended.

Specifying Frame 0 to 1 or Frame 1 to 1 will return the first frame.

Specifying the Frame -1 in the first frame produces an error. If the frame number of
the last frame is unknown, Frame -1 to -1 cannot be specified to return the exact
last frame.

C++ API Programming Guide
Jobs and Commands

131

DIVA Application Programming Guide

Examples:

• start=0 - end=1

This will restore only the first frame.

• start=600 - end=635, start=679 - end=779

This will restore frames 600 through 635, and frames 679 through 779.

• start=810 - end=-1

This will restore all frames from frame 810 to the end of the archive.

Caution: In the following process the offsetVector, sourceFile, destFile,
and fileFolder parameters should not be specified for the DPX Partial
Object Restore type.

To issue a DPX Partial Restore, populate the format field in the job with the value
DIVA_FORMAT_DPX. Create a DIVA_OFFSET_SOURCE_DEST object in the fileList
parameter of the job. In this object, add a DIVA_RANGE object in the range parame-
ter that contains the start and end frames of the range to be restored.

To specify another range of frames within the same job, another DIVA_OFFSET_-
SOURCE_DEST object should be added to the job in the same manner.

The actual file name may, or may not, match the frame number in DIVA. During the
restore process Manager interrogates the archive, finds the file order, and deter-
mines the frame number from the resulting file order. It does not consider the file
name. The first .dpx, .tif, or .tiff file found is considered frame 1.

Be careful when archiving DPX files to ensure they can be partially restored prop-
erly, in part because DPX Partial Restore does not examine the file name or the DPX
header information to determine which file is assigned to which frame. The assign-
ment is based purely on the order in which the .dpx files appear in the archive. By
default, the ordering is established by the Source Server and is typically alphanu-
meric. For example, NTFS DISK Servers order files and folders case insensitively as a
general rule except where diacritical marks such as ', `, ^, and so on are applied.

By default, when DIVA encounters a subfolder it recursively processes all of the chil-
dren of that folder before continuing with other files. If a folder appears in the
alphanumeric folder listing it is archived recursively in the order that it appears.

However, this can create some issues. For example, if all of the subdirectories of a
given directory should be processed first, followed by the files in the directory, or all
files processed first and then subdirectories is desired. The Actor allows the archive
options -file_order DIRS_FIRST or -file_order FILES_FIRST to address
these issues.

DPX Partial Restore looks at the entire object as a single piece of media. If multiple
reels or clips appear in an archive they can be stored in folders and partially
restored through a Files and Folders Partial Restore. However, they will be viewed as

C++ API Programming Guide
Jobs and Commands

132

DIVA Application Programming Guide

one long movie clip to DPX Partial Restore. If this is desired, ensure that the directo-
ries are sorted alphanumerically in the order the frames should be arranged.

DIVA does not perform any special audio handling for DPX media other than what
might be embedded in DPX files themselves. DIVA supports transcoding of DPX
media. However, a transcoder may change the file names and (or) file order of the
DPX archive.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_SPEC DIVA_partialRestoreObject (
IN string objectName,
IN string objectCategory,
IN int instanceID,
IN vector <DIVA_OFFSET_SOURCE_DEST> fileList,
IN string destination,
IN string filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN string restoreOptions,
IN DIVA_FORMAT format,
OUT int *requestNumber
);

• objectName

The name of the object to be partially restored.

• objectCategory

Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• instanceID

The ID of a non-spanned tape instance or DIVA_ANY_INSTANCE.

• filelist

List of the files of the object to be partially restored. Each structure contains the
Source Server file name, a vector of offset pairs, and a Destination Server file name.
The same source file can be used in several structures, but Destination Server files
must be unique. A file present in the object cannot be in any structure or it won't be
restored.

• destination

Destination Server (for example, a video server or browsing server) to put the
object files. This name must be known by the DIVA configuration description.

• filesPathRoot

The root folder on the Destination Server where the object files will be placed. If
this is null (string("")), the files will be placed in the FILES_PATH_ROOT folder
specified when archiving the object using the DIVA_archiveObject() function.

C++ API Programming Guide
Jobs and Commands

133

DIVA Application Programming Guide

• qualityOfService

One of the following codes:
– DIVA_QOS_DEFAULT

Restoring is performed according to the default Quality Of Service (currently
direct restore).

– DIVA_QOS_CACHE_ONLY (-qos_cache_only)

Use cache restore only.

– DIVA_QOS_DIRECT_ONLY (-qos_direct_only)

Use direct restore only.

– DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)

Use cache restore if available, or direct restore if cache restore is not available.

– DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)

Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a
logical OR between the previously documented Quality Of Service parameter
and the following constant:

– DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

Do not overwrite existing files on the Destination Server.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• restoreOptions

Additional options that must be used for performing the transfer of data from DIVA
to the Destination Server. These options supersede any options specified in the
DIVA configuration database. Currently the possible values for restoreOptions are
as follows:

– A null string to specify no objects

– -do_not_overwrite executes this additional service

C++ API Programming Guide
Jobs and Commands

134

DIVA Application Programming Guide

– -do_not_check_existence executes this additional service

– -delete_and_write executes this additional service

– -login represents the log in required for some Source Servers. This option
obsoletes the -gateway option in earlier releases.

– -pass represents the password used with the -login option for some Source
Servers.

• format

– DIVA_FORMAT_BYTES

Offsets must be given as byte offsets. When the offsetVector field of a
DIVA_OFFSET_SOURCE_DEST structure contains more than one DIVA_OFF-
SET_PAIR element, every corresponding extract is concatenated to create the
Destination Server file.

– DIVA_FORMAT_BYTES_HEADER

This has been deprecated but left for compatibility purposes only.
– DIVA_FORMAT_VIDEO_GXF

Offsets must be given as timecodes, and the file to be partially restored must be
in GXF format.

The fileList vector parameter must contain only one DIVA_OFFSET_-
SOURCE_DEST element.

The offsetVector vector parameter must contain only one DIVA_OFF-
SET_PAIR element.

Only the DIVA_QOS_DIRECT_ONLY Quality Of Service is supported for this for-
mat.

– DIVA_FORMAT_VIDEO_SEA

Offsets must be given as timecodes. The file to be partially restored must be in
SAF format and provide an index file.

A part description then contains one DIVA_OFFSET_SOURCE_DEST structure for
each WAV file of the clip. There must be at least one WAV file per clip part.

* The Source Server file name in each structure must have the .wav or the .WAV
extension.

* Each structure must contain exactly one DIVA_OFFSET_PAIR structure with
a timecode pair equal to the timecode pair associated with the AVI file.

* The next part is delimited by the first DIVA_OFFSET_SOURCE_DEST structure
associated with an AVI file.

* The Destination Server must support the successive restore of each part, with
the AVI file (without WAV file) and then of the WAV files all at once in the same
connection session.

– DIVA_FORMAT_VIDEO_MPEG2_TS

Offsets must be given as timecodes. The video file must be encoded using the
MPEG2 Transport Stream format. Use this for VELA encoders.

C++ API Programming Guide
Jobs and Commands

135

DIVA Application Programming Guide

– DIVA_FORMAT_VIDEO_MXF

Offsets must be given as timecodes. The file format expected by this type of Par-
tial File Restore is a single MXF file. A detailed matrix of supported MXF files is
given in the product description.

– DIVA_FORMAT_VIDEO_PINNACLE

Offsets must be given as timecodes. This Partial File Restore format expects a
specific object structure. This is applicable to Pinnacle clips composed of three
files (header, ft, and std). DIVA prefers the MSS Server type for creating this clip.

The fileList vector parameter must contain only one DIVA_OFFSET_-
SOURCE_DEST element. The offsetVector must contain only one DIVA_OFF-
SET_PAIR element. The DIVA_OFFSET_SOURCE_DEST element must be
associated with the header file only. The Destination Server name is also the
header.

– DIVA_FORMAT_VIDEO_OMNEON

Offsets must be given as timecodes. This type of Partial File Restore can be used
to partially restore QuickTime files (referenced and self-contained clips are sup-
ported). A detailed matrix of supported QuickTime clips is given in the product
description.

The fileList vector parameter must contain only one DIVA_OFFSET_-
SOURCE_DEST element. The offsetVector must contain only one DIVA_OFF-
SET_PAIR element. The DIVA_OFFSET_SOURCE_DEST element must be
associated with the .mov file only if it's not a self-contained clip.

– DIVA_FORMAT_VIDEO_LEITCH

Offsets must be given as timecodes. The video file must be encoded using the
LEITCH Video Server and the format is LXF.

– DIVA_FORMAT_VIDEO_QUANTEL

Offsets must be given as timecodes. This type of Partial File Restore can be used
to partially restore Quantel clips that have been archived with a QUANTEL_QCP
Server type.

– DIVA_FORMAT_AUTODETECT

Offsets must be given as timecodes. This type of Partial File Restore can detect
video clips with the following archive formats:

* QuickTime self-contained

* QuickTime with referenced media files (the .mov file must be in the first
position)

* DIF + WAV files

* AVI with audio interleaved (separated WAV is not currently supported)

* MXF (self-contained)

* MPEG PS

* LXF

* Seachange (the .pd file must be in the first position)

C++ API Programming Guide
Jobs and Commands

136

DIVA Application Programming Guide

The fileList vector parameter must contain only one DIVA_OFFSET_-
SOURCE_DEST element. The offsetVector must contain only one DIVA_OFF-
SET_PAIR element. The DIVA_OFFSET_SOURCE_DEST element must be
associated with the following:

* The .mov file if it is a QuickTime clip.

* The .dif file if it is a DV file.

* The .avi file if it is an AVI clip.
– DIVA_FORMAT_FOLDER_BASED

Specifies a set of files and folders to be restored. A recursive flag can be set to
restore subfolders. All specified files and folders are restored.

– DIVA_FORMAT_DPX

Specifies a set of intervals, frame X through frame Y, where frames are sorted and
traversed alphanumerically.

Only files with .tif or .tiff data formats are supported. All files must have a .dpx
extension. The first frame of a DPX object is Frame 1. Frame numbers 0 and -1 can
be used to refer to the first and last frame respectively.

• requestNumber

The job number assigned to this job. This number is used for querying the status or
canceling this job.

class DIVA_OFFSET_SOURCE_DEST {
public:
DIVA_STRING sourceFile;
vector<DIVA_OFFSET_PAIR> offsetVector;
DIVA_STRING destFile;
DIVA_FILE_FOLDER fileFolder;
DIVA_RANGE range;
};

• sourceFile

The Source Server file name when the format is other than DIVA_FORMAT_-
FOLDER_BASED or DIVA_FORMAT_DPX.

• offsetVector

The vector of intervals to restore. The type of all offsets in all DIVA_OFFSET_-
SOURCE_DEST structures must be compliant with the format parameter of the Par-
tial File Restore job. Valid only when the format is other than
DIVA_FORMAT_FOLDER_BASED or DIVA_FORMAT_DPX.

• destFile

The file name to be used at the Destination Server. Valid only when format is other
than DIVA_FORMAT_FOLDER_BASED or DIVA_FORMAT_DPX.

• fileFolder

The file or folder name. Used only when the format is DIVA_FORMAT_-
FOLDER_BASED.

C++ API Programming Guide
Jobs and Commands

137

DIVA Application Programming Guide

• range

The range of frames to be restored. Used only when the format is DIVA_FOR-
MAT_DPX.

DIVA_OFFSET_PAIR (This class only has public functions.)
The following are the constructors:

• DIVA_SPEC DIVA_OFFSET_PAIR (__int64 pBegin, __int64 pEnd, bool
_isTimeCode)

Constructor for use with byte offsets. DIVA_OFFSET_BYTE_BEGIN and DIVA_OFF-
SET_BYTE_END are valid.

• DIVA_SPEC DIVA_OFFSET_PAIR (const DIVA_STRING &pBegin, const
DIVA_STRING &pEnd)

Constructor for use with timecode offsets. Timecodes are formatted as
HH:MM:SS:FF.

The following are the attribute accessors:

• DIVA_SPEC bool isTimeCode();

This is true if the offset pair was constructed with timecode offsets.

• DIVA_SPEC DIVA_STRING getTimeCodeBegin();

Return the beginning offset as a timecode.

• DIVA_SPEC DIVA_STRING getTimeCodeEnd();

Return the ending offset as a timecode.

• DIVA_SPEC __int64 getByteBegin();

Return the beginning offset as bytes.

• DIVA_SPEC __int64 getByteEnd();

Return the ending offset as bytes.
class DIVA_FILE_FOLDER {
public:
 DIVA_STRING fileFolder;
 DIVA_STRING option
};

• fileFolder

The file or folder name.

• option

Options (for example, -r to recurse folders).
class DIVA_RANGE {
public:
 int startRange;
 int endRange;
};

C++ API Programming Guide
Jobs and Commands

138

DIVA Application Programming Guide

• startRange

The first frame number to be restored.

• endRange

The last frame number to be restored.

The format gives information about how to interpret the interval and about which
specific operation should eventually be performed.
typedef enum {
 DIVA_FORMAT_BYTES = 0,
 DIVA_FORMAT_BYTES_HEADER,
 DIVA_FORMAT_VIDEO_GXF,
 DIVA_FORMAT_VIDEO_SEA,
 DIVA_FORMAT_VIDEO_AVI_MATROX,
 DIVA_FORMAT_VIDEO_MPEG2_TS,
 DIVA_FORMAT_VIDEO_MXF,
 DIVA_FORMAT_VIDEO_PINNACLE,
 DIVA_FORMAT_VIDEO_OMNEON,
 DIVA_FORMAT_VIDEO_LEITCH,
 DIVA_FORMAT_VIDEO_QUANTEL,
 DIVA_FORMAT_AUTODETECT,
 DIVA_FORMAT_FOLDER_BASED,
 DIVA_FORMAT_DPX
} DIVA_FORMAT;

• DIVA_FORMAT_BYTES

Raw bytes

• DIVA_FORMAT_VIDEO_GXF

GXF video format

• DIVA_FORMAT_VIDEO_SEA

Seachange video format

• DIVA_FORMAT_VIDEO_AVI_MATROX

Matrox-specific AVI format (+ WAV files)

• DIVA_FORMAT_VIDEO_MPEG_TS

MPEG Transport Stream

• DIVA_FORMAT_VIDEO_MXF

MXF video format

• DIVA_FORMAT_VIDEO_PINNACLE

Pinnacle video format

• DIVA_FORMAT_VIDEO_OMNEON

Omneon video format

• DIVA_FORMAT_VIDEO_LEITCH

Leitch video format

• DIVA_FORMAT_VIDEO_QUANTEL

Quantel QCP video format

C++ API Programming Guide
Jobs and Commands

139

DIVA Application Programming Guide

• DIVA_FORMAT_VIDEO_AUTODETECT

Automatic format detection

• DIVA_FORMAT_FOLDER_BASED

Fully restore the specified files and (or) folders

• DIVA_FORMAT_DPX

DPX video format

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

DIVA can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

The Manager or API detected an internal error.

• DIVA_ERR_INVALID_PARAMETER

The Manager did not understand a parameter value.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default value is three hundred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_OBJECT_OFFLINE

There is no inserted instance in the Managed Storage and no Actor could provide a
disk instance.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

C++ API Programming Guide
Jobs and Commands

140

DIVA Application Programming Guide

• DIVA_ERR_INSTANCE_OFFLINE

The instance specified for restoring this object is ejected, or the Actor owning the
specified disk instance is not available.

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The instance specified for restoring this object does not exist.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being Archived, Restored, Deleted, and so on).

• DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST

The specified Server is unknown by the DIVA system.

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

See also DIVA_restoreObject, DIVA_getRequestInfo, and
DIVA_getPartialRestoreRequestInfo.

DIVA_release
Indicates to the Manager that this instance can be externalized. This function has no
effect if the instance has already been released. The list of instances that are RELEASED
and INSERTED may be retrieved and shown in the Web App.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_release (
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN int instanceID
);

• objectName

The name of the object to be copied.

• objectCategory

The Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• instanceID

A value of DIVA_EVERY_INSTANCE forces this function to apply to every instance
of the given object.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

C++ API Programming Guide
Jobs and Commands

141

DIVA Application Programming Guide

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

DIVA can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

The Manager or API detected an internal error.

• DIVA_ERR_INVALID_PARAMETER

The Manager did not understand a parameter value.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The instance specified for restoring this object does not exist.

• DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE

No tape instance exists for this object.

• DIVA_ERR_NO_INSTANCE_TAPE_EXIST

The specified object has instances that are partially deleted.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

See also DIVA_require.

DIVA_require
Indicates to the Manager that this instance must be inserted. If the instance is already
inserted, this function has no effect. The list of instances that are REQUIRED and
EJECTED can be retrieved and shown in the Web App.

Synopsis
#include “DIVAapi.h”

C++ API Programming Guide
Jobs and Commands

142

DIVA Application Programming Guide

DIVA_STATUS DIVA_require(
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN int instanceID
);

• objectName

Name of the object to be copied.

• objectCategory

Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• instanceID

A value of DIVA_EVERY_INSTANCE forces the function to apply to every instance
of the given object.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

DIVA can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

The Manager or API detected an internal error.

• DIVA_ERR_INVALID_PARAMETER

The Manager did not understand a parameter value.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

C++ API Programming Guide
Jobs and Commands

143

DIVA Application Programming Guide

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The instance specified for restoring this object does not exist.

• DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE

No tape instance exists for this object.

• DIVA_ERR_NO_INSTANCE_TAPE_EXIST

The specified object has instances that are partially deleted.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

See also DIVA_release.

DIVA_restoreInstance
Restores an object from a specific instance. If the instance is externalized the operation
fails even if there are other instances available for the object.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_restoreInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING CategoryName,
IN int instanceID,
IN DIVA_STRING destination,
IN DIVA_STRING filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
);

• objectName

Name of the object to be restored.

• objectCategory

Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• instanceID

The instance identifier.

• destination

The Destination Server (for example, a video server or browsing server) where the
object files will be restored. This name must be known by the DIVA configuration
description.

C++ API Programming Guide
Jobs and Commands

144

DIVA Application Programming Guide

• filesPathRoot

Root folder on the Destination Server where the object files will be placed. If this is
null (string("")), the files will be placed in the FILES_PATH_ROOT folder speci-
fied when archiving the object using the DIVA_archiveObject() function.

• qualityOfService

One of the following codes:
– DIVA_QOS_DEFAULT

Restoring is performed according to the default Quality Of Service (currently
direct and cache for restore operations).

– DIVA_QOS_CACHE_ONLY

Use cache archive only.
– DIVA_QOS_DIRECT_ONLY

Use direct restore only—no disk instance is created.
– DIVA_QOS_CACHE_AND_DIRECT

Use cache restore if available, or direct restore if cache restore is not available.
– DIVA_QOS_DIRECT_AND_CACHE

Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To job those services, use a logical
OR between the previously documented Quality Of Service parameter and the
following constant:
* DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

Do not overwrite existing files on the Destination Server.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• restoreOptions

Additional options that must be used for performing the transfer of data from DIVA
to the Destination Server. These options supersede any options specified in the

C++ API Programming Guide
Jobs and Commands

145

DIVA Application Programming Guide

DIVA configuration database. Currently the possible values for restoreOptions are
as follows:

– Null String

A null string specifies no options.
– -login

A user name and password is required to log in to some Source Servers. This
option obsoletes the -gateway option from earlier releases.

– -pass

The password used with -login.

• requestNumber

A number identifying this job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

DIVA can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

The Manager or API detected an internal error.

• DIVA_ERR_INVALID_PARAMETER

The Manager did not understand a parameter value.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

Count of simultaneous jobs has reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default is 300.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

C++ API Programming Guide
Jobs and Commands

146

DIVA Application Programming Guide

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_INSTANCE_OFFLINE

The specified instance for restoring this object is ejected, or the Actor owning the
specified disk instance is not available.

• DIVA_ERR_INSTANCE_DOESNT_EXIST

The instance specified for restoring this object does not exist.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being Archived, Restored, Deleted, and so on).

• DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST

The specified Server is not known by the DIVA system.

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

See also DIVA_archiveObject and DIVA_getObjectInfo.

DIVA_restoreObject
Submits an Object Restore job to the Manager and the Manager chooses the
appropriate instance to be restored. This function returns as soon as the Manager
accepts the job. To check that the operation was successful, the application must call
the function DIVA_getRequestInfo().

If the job’s object is on media that is not available, the job will fail. The media names
(tape barcodes and disk names) that contain instances of the object will be included in
the additionalInfo field of the DIVA_getRequestInfo() response.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_restoreObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING destination,
IN DIVA_STRING filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
);

• objectName

Name of the object to be restored.

C++ API Programming Guide
Jobs and Commands

147

DIVA Application Programming Guide

• objectCategory

Collection assigned to the object when it was archived. This parameter can be a
null string. However, this may result in an error if several objects have the same
name.

• destination

The Destination Server (for example, a video server or browsing server) where the
object files will be restored. This name must be known by the DIVA configuration
description.

• filesPathRoot

Root folder on the Destination Server where the object files will be placed. If this is
null (string("")), the files will be placed in the FILES_PATH_ROOT folder speci-
fied when archiving the object using the DIVA_archiveObject() function.

• qualityOfService

One of the following codes:
– DIVA_QOS_DEFAULT

Restoring is performed according to the default Quality Of Service (currently
direct and cache for restore operations).

– DIVA_QOS_CACHE_ONLY (-qos_cache_only)

Use cache restore only.

– DIVA_QOS_DIRECT_ONLY (-qos_direct_only)

Use direct restore only.

– DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)

Use cache restore if available, or direct restore if cache restore is not available.

– DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)

Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a
logical OR between the previously documented Quality Of Service parameter
and the following constant:

– DIVA_QOS_NEARLINE_ONLY (-qos_nearline_only)

Use Nearline Restore only. Nearline Restore will restore from a disk instance if it
exists, otherwise, it will create a disk instance and restore from the newly created
disk instance.

– DIVA_QOS_NEARLINE_AND_DIRECT (-qos_nearline_and_direct)

Use Nearline Restore if available, or Direct Restore if Nearline Restore is not avail-
able. Additional and optional services are available. To request those services use
a logical OR between the previously documented Quality Of Service parameter
and the following constants:
* DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

C++ API Programming Guide
Jobs and Commands

148

DIVA Application Programming Guide

Do not overwrite existing files on the Destination Server.
* DIVA_RESTORE_SERVICE_DO_NOT_CHECK_EXISTENCE

Do not check existence of the clip on the server.
* DIVA_RESTORE_SERVICE_DELETE_AND_WRITE

Force delete and rewrite if object exists on the server.
* DIVA_RESTORE_SERVICE_DEFAULT

Operate using the default setting in the Manager configuration.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• restoreOptions

Additional options that must be used for performing the transfer of data from DIVA
to the Destination Server. These options supersede any options specified in the
DIVA configuration database. Currently the possible values for restoreOptions are
as follows:

– Null String

A null string specifies no options.
– -login

A user name and password is required to log in to some Source Servers. This
option obsoletes the -gateway option from earlier releases.

– -pass

The password used with -login.

• requestNumber

Job number assigned to this job. This number is used for querying the status or
canceling this job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

C++ API Programming Guide
Jobs and Commands

149

DIVA Application Programming Guide

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

DIVA can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

The Manager or API detected an internal error.

• DIVA_ERR_INVALID_PARAMETER

The Manager did not understand a parameter value.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default value is three hundred.

• DIVA_ERR_OBJECT_DOESNT_EXIST

The specified object does not exist in the database.

• DIVA_ERR_OBJECT_OFFLINE

There is no inserted instance in the Managed Storage and no Actor could provide a
Disk Instance.

• DIVA_ERR_SEVERAL_OBJECTS

More than one object with the specified name exists in the database.

• DIVA_ERR_OBJECT_IN_USE

The object is currently in use (being Archived, Restored, Deleted, and so on).

• DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST

The specified Server is not known by the DIVA system.

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

See also DIVA_getRequestInfo and DIVA_copyToGroup and DIVA_copy.

C++ API Programming Guide
Jobs and Commands

150

DIVA Application Programming Guide

DIVA_transcodeArchive
Submits a Transcode Archive job to the Manager. The original object will be restored to
the local Actor cache then transcoded to the format defined in the option field. A new
object containing the transcoded clip will then be archived back to DIVA.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_transcodeArchive (
IN DIVA_STRING parentObjectName,
IN DIVA_STRING parentObjectCategory,
IN int instance,
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING mediaName,
IN DIVA_STRING comments,
IN DIVA_STRING archiveOptions,
IN DIVA_ARCHIVE_QOS qualityOfService,
IN bool bCascadeDelete,
IN int priorityLevel,
OUT int *requestNumber
);

• parentObjectName

Name of the original object to be transcoded.

• parentObjectCategory

Collection assigned to the original object.

• instance

Instance of the parent object. The default is -1.

• objectName

Name of the resulting transcoded object from the transcoding operation.

• objectCategory

Collection of the transcoded object.

C++ API Programming Guide
Jobs and Commands

151

DIVA Application Programming Guide

• mediaName

The tape group or disk array where the object is to be saved. The media may be
defined as follows:

– Name (of the Tape Group or Array)

Provide the Tape Group or Disk Array name as defined in the configuration. The
object is saved to the specified media and assigned to the default SP (Storage
Plan).

– SP Name

Provide a Storage Plan Name as defined in the configuration. The object will be
assigned to the specified Storage Plan and saved to the default media specified.

– Both of the above (Name and SP Name)

The object is saved to the specified media as in Name, and assigned to the speci-
fied Storage Plan as in SP Name. The Name and the SP Name must be separated
by the & delimiter (this is configurable).

When this parameter is a null string, the default group of tapes called DEFAULT is
used. Complex objects can only be saved to AXF media types.

• comments

Optional information describing the object. This can be a null string.

• archiveOptions

Additional options that must be used for performing the transfer of data from the
Source Server to DIVA. These options supersede any options specified in the DIVA
configuration database. Currently the possible values for archiveOptions are:
– -tr_archive_format FORMAT

Destination Server format of the retrieved object. This is required.
– -tr_names trans1

Names of the transcoders that have to perform this operation. If more than one
transcoder is selected, the performing transcoder will be chosen based on the
current loading. If this option is not specified, the performing transcoder will be
chosen from all DIVA transcoders based on the current loading. This is optional.

– -tr_names trans1,trans2

Names of the transcoders that have to perform this operation. Multiple transcod-
ers are identified in a comma separated list (trans1, trans2, and so on). If more
than one transcoder is selected, the performing transcoder will be chosen based
on the current loading. If this option is not specified, the performing transcoder
will be chosen from all DIVA transcoders based on the current loading. This is
optional.

C++ API Programming Guide
Jobs and Commands

152

DIVA Application Programming Guide

• qualityOfService

One of the following codes:
– DIVA_QOS_DEFAULT

Restoring is performed according to the default Quality Of Service (currently
cache for archive operations).

– DIVA_QOS_CACHE_ONLY

Use cache archive only.
– DIVA_QOS_DIRECT_ONLY

Use direct archive only—no disk instance is created.
– DIVA_QOS_CACHE_AND_DIRECT

Use cache archive if available, or direct archive if cache archive is not available.
– DIVA_QOS_DIRECT_AND_CACHE

Use direct archive if available, or cache archive if direct archive is not available.

• bCascadeDelete

Shows if transcoded object is linked to the original object. If true, both the original
object and the transcoded object will be deleted.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

• There are six predefined values as follows:

– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• requestNumber

Job number assigned to this job. This number is used for querying the status or
canceling this job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

C++ API Programming Guide
Jobs and Commands

153

DIVA Application Programming Guide

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system can no longer accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default value is three hundred.

• DIVA_ERR_OBJECT_ALREADY_EXISTS

The specified object already exists in the database.

• DIVA_ERR_OBJECT_PARTIALLY_DELETED

The specified object has instances that are partially deleted.

See also DIVA_linkObjects.

DIVA_transferFiles
Submits a Transfer Files job to the Manager. The job will transfer files from a remote
server (the Source Server) to another remote server (the Destination Server). This
function returns as soon as the Manager accepts the job. The application must call the
function DIVA_getRequestInfo()to confirm that the operation completed
successfully.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_transferFiles (
IN DIVA_STRING source,
IN DIVA_STRING sourcePathRoot,
IN vector<DIVA_STRING> filenamesList,
IN DIVA_STRING destination,

C++ API Programming Guide
Jobs and Commands

154

DIVA Application Programming Guide

IN DIVA_STRING destinationPathRoot,
IN int priorityLevel,
OUT int *requestNumber
);

• source

Name of the Source Server (for example, a video server or browsing server). This
name must be known by the DIVA configuration description.

• sourcePathRoot

Root folder for the files specified by the filenamesList parameter.

• filenamesList

List of file path names relative to the folder specified by the sourcePathRoot
parameter. When the sourcePathRoot is null, path names must be absolute
names.

• destination

Name of the Destination Server (for example a video server or browsing server).
This name must be known by the DIVA configuration description.

• destinationPathRoot

Root folder where the files will be placed at the Destination Server.

• priorityLevel

The priority level for this job. The priorityLevel can be in the range zero to one hun-
dred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the low-
est priority and one hundred the highest priority.

There are six predefined values as follows:
– DIVA_REQUEST_PRIORITY_MIN

– DIVA_REQUEST_PRIORITY_LOW

– DIVA_REQUEST_PRIORITY_NORMAL

– DIVA_REQUEST_PRIORITY_HIGH

– DIVA_REQUEST_PRIORITY_MAX

– DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses
the default priority defined in the Manager configuration for the job.

Using a value either outside of the range of zero to one hundred, or predefined val-
ues yields a DIVA_ERR_INVALID_PARAMETER error.

• requestNumber

Job number assigned to this job. This number is used for querying the status or
canceling this job.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

C++ API Programming Guide
Jobs and Commands

155

DIVA Application Programming Guide

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system is no longer able to accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

• DIVA_ERR_INVALID_PARAMETER

A parameter value was not understood by the Manager.

• DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS

The count of simultaneous jobs reached the maximum allowed value. This variable
is set in the manager.conf configuration file and the default value is three hundred.

• DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST

The specified Server is not known by the DIVA system.

Also see DIVA_getRequestInfo.

DIVA_unlockObject
A call to this function will unlock an object. Locked objects cannot be restored.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_unlockObject (
IN DIVA_STRING objectName,
IN DIVA_STRING Category,
IN string options
);

• objectName

Name of the object.

C++ API Programming Guide
Jobs and Commands

156

DIVA Application Programming Guide

• Category

The Collection assigned to the object when it was archived.

• options

TBD

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

• DIVA_OK

The job was correctly submitted and accepted by the Manager.

• DIVA_ERR_NOT_CONNECTED

No connection is open.

• DIVA_ERR_SYSTEM_IDLE

The DIVA system is no longer able to accept connections and queries.

• DIVA_ERR_BROKEN_CONNECTION

The connection with the Manager was broken.

• DIVA_ERR_TIMEOUT

The timeout limit was reached before communication with the Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and
equals one hundred-eighty (180) seconds by default.

• DIVA_ERR_UNKNOWN

An unknown status was received from the Manager.

• DIVA_ERR_INTERNAL

An internal error was detected by the Manager or by the API.

	DIVA Installation and Configuration Guide
	Contents
	Introduction
	DIVA Concepts
	Archive Request
	Restore Request
	Partial Restore
	Delete Request

	Operational Boundaries
	Number of DIVA Connections
	Number of Simultaneous DIVA Jobs
	Number of API Tasks
	Special Authorized Characters
	Maximum Number of Allowed Characters
	File Path Limitations

	REST API Configuration
	Main DIVA API Calls
	Getting Started
	Structure
	Initial Configuration
	Retrieving All Configured Actors
	Submitting a Request

	Sample Python Program

	Data Service API
	Overview
	Data Service API
	DIVA Manager Endpoints
	DIVA Connect REST API

	Workflows
	Authentication Token Workflow
	Roles
	DIVA API Workflows
	DIVA Request Status Codes
	Partial Restore Request Formats and Manager Responses
	Request and Response Sample
	Sample 1: Body for Bytes Partial Restore
	Sample 2: Body for Video GXF (timecode) Partial Restore
	Sample 3: Body for File-Folder based Partial Restore
	Sample 4: Body for DPX (Range) PR

	Python DIVAScript Configuration
	About Python DIVAScript
	DIVAScript Commands Supported by REST API
	DIVAScript Configuration File Settings

	Running DIVAScript in Server Mode
	DIVAScript in Command-Line Mode
	DivaScript command syntax

	Accessing Java API Documentation
	Accessing Java API Documentation Before Installation
	Accessing Java API Documentation After Installation
	Known Issues

	C++ API Programming Guide
	C++ API Overview
	DIVA Release Compatibility
	Managing Connections
	Securing the API
	SSL (Secure Sockets Layer) and Authentication

	Compilers
	Visual C++ Compiler on Windows
	Supported Platforms
	Supported Compilers
	API Library Options
	API Compilation
	Initiator Sample Program API Usage

	Using the API in Multithreaded Applications
	Using Unicode Strings in the API

	Session Management Commands
	DIVA_getApiVersion
	Synopsis

	DIVA_SSL_initialize
	Synopsis

	DIVA_connect
	Synopsis
	Multithreaded Applications:
	Return Values

	DIVA_disconnect
	Synopsis
	Multithreaded Applications
	Return Values

	Jobs and Commands
	DIVA_addGroup
	Synopsis
	Return Values

	DIVA_archiveObject
	Synopsis
	* DIVA_ARCHIVE_SERVICE_DELETE_ON_SOURCE

	Return Values

	DIVA_associativeCopy
	Synopsis
	Return Values

	DIVA_cancelRequest
	Synopsis
	Return Values

	DIVA_changeRequestPriority
	Synopsis
	Return Values

	DIVA_copyToGroup and DIVA_copy
	Synopsis
	Return Values

	DIVA_copyToNewObject
	Synopsis
	Return Values

	DIVA_deleteGroup
	Synopsis
	Return Values

	DIVA_deleteInstance
	Synopsis
	Return Values

	DIVA_deleteObject
	Synopsis
	Return Values

	DIVA_ejectTape
	Synopsis
	Return Values

	DIVA_enable_Automatic_Repack
	Synopsis
	Return Values

	DIVA_getArchiveSystemInfo
	Synopsis
	Return Values

	DIVA_getArrayList
	Synopsis
	Return Values

	DIVA_getFinishedRequestList
	Synopsis
	Return Values

	DIVA_getFilesAndFolders
	Synopsis
	Return Values

	DIVA_getGroupsList
	Synopsis
	Return Values

	DIVA_getObjectDetailsList
	Synopsis
	Return Values
	Use with DIVA Connect
	Use and Recommended Practices
	Recommended Practices for Continuous Updates Notification Design Pattern (No Media Filter)
	Return Values

	DIVA_getObjectInfo
	Synopsis
	Return Values

	DIVA_getPartialRestoreRequestInfo
	Synopsis
	Return Values

	DIVA_getRequestInfo
	Synopsis
	Return Values
	MOB ID
	XML Document

	DIVA_getSourceDestinationList
	Synopsis
	Return Values

	DIVA_getStoragePlanList
	Synopsis
	Return Values

	DIVA_getTapeInfo
	Synopsis
	Return Values

	DIVA_insertTape
	Synopsis
	Return Values

	DIVA_linkObjects
	Synopsis
	Return Values

	DIVA_lockObject
	Synopsis
	Return Values

	DIVA_multipleRestoreObject
	Synopsis
	* DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

	Return Values

	DIVA_partialRestoreObject
	Synopsis
	* The Source Server file name in each structure must have the .wav or the .WAV extension.
	* Each structure must contain exactly one DIVA_OFFSET_PAIR structure with a timecode pair equal to the timecode pair associated with the AVI file.
	* The next part is delimited by the first DIVA_OFFSET_SOURCE_DEST structure associated with an AVI file.
	* The Destination Server must support the successive restore of each part, with the AVI file (without WAV file) and then of the WAV files all at once in the same connection session.
	* QuickTime self-contained
	* QuickTime with referenced media files (the .mov file must be in the first position)
	* DIF + WAV files
	* AVI with audio interleaved (separated WAV is not currently supported)
	* MXF (self-contained)
	* MPEG PS
	* LXF
	* Seachange (the .pd file must be in the first position)
	* The .mov file if it is a QuickTime clip.
	* The .dif file if it is a DV file.
	* The .avi file if it is an AVI clip.

	DIVA_OFFSET_PAIR (This class only has public functions.)
	Return Values

	DIVA_release
	Synopsis
	Return Values

	DIVA_require
	Synopsis
	Return Values

	DIVA_restoreInstance
	Synopsis
	* DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

	Return Values

	DIVA_restoreObject
	Synopsis
	* DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
	* DIVA_RESTORE_SERVICE_DO_NOT_CHECK_EXISTENCE
	* DIVA_RESTORE_SERVICE_DELETE_AND_WRITE
	* DIVA_RESTORE_SERVICE_DEFAULT

	Return Values

	DIVA_transcodeArchive
	Synopsis
	Return Values

	DIVA_transferFiles
	Synopsis
	Return Values

	DIVA_unlockObject
	Synopsis
	Return Values

